Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 65(10): 2757-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24470468

RESUMO

The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.


Assuntos
Arabidopsis/genética , Folhas de Planta/efeitos da radiação , Poliploidia , Raios Ultravioleta
2.
Plant Cell ; 22(4): 1046-56, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20363770

RESUMO

Grain morphology in wheat (Triticum aestivum) has been selected and manipulated even in very early agrarian societies and remains a major breeding target. We undertook a large-scale quantitative analysis to determine the genetic basis of the phenotypic diversity in wheat grain morphology. A high-throughput method was used to capture grain size and shape variation in multiple mapping populations, elite varieties, and a broad collection of ancestral wheat species. This analysis reveals that grain size and shape are largely independent traits in both primitive wheat and in modern varieties. This phenotypic structure was retained across the mapping populations studied, suggesting that these traits are under the control of a limited number of discrete genetic components. We identified the underlying genes as quantitative trait loci that are distinct for grain size and shape and are largely shared between the different mapping populations. Moreover, our results show a significant reduction of phenotypic variation in grain shape in the modern germplasm pool compared with the ancestral wheat species, probably as a result of a relatively recent bottleneck. Therefore, this study provides the genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain.


Assuntos
Evolução Molecular , Locos de Características Quantitativas , Sementes/anatomia & histologia , Triticum/genética , Mapeamento Cromossômico , Genes de Plantas , Fenótipo , Análise de Componente Principal , Sementes/genética
3.
New Phytol ; 183(2): 315-326, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19402876

RESUMO

Responses specific to ultraviolet B (UV-B) wavelengths are still poorly understood, both in terms of initial signalling and effects on morphogenesis. Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is the only known UV-B specific signalling component, but the role of UVR8 in leaf morphogenesis is unknown. The regulatory effects of UVR8 on leaf morphogenesis at a range of supplementary UV-B doses were characterized, revealing both UVR8-dependent and independent responses to UV irradiation. Inhibition of epidermal cell division in response to UV-B is largely independent of UVR8. However, overall leaf growth under UV-B irradiation in wild-type plants is enhanced compared with a uvr8 mutant because of a UVR8-dependent compensatory increase of cell area in wild-type plants. UVR8 was also required for the regulation of endopolyploidy in response to UV-B, and the uvr8 mutant also has a lower density of stomata than the wild type in the presence of UV-B, indicating that UVR8 has a regulatory role in other developmental events. Our findings show that, in addition to regulating UV-protective gene expression responses, UVR8 is involved in controlling aspects of leaf growth and morphogenesis. This work extends our understanding of how UV-B response is orchestrated at the whole-plant level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proteínas Cromossômicas não Histona/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Raios Ultravioleta , Arabidopsis/citologia , Proliferação de Células/efeitos da radiação , Modelos Biológicos , Morfogênese/efeitos da radiação , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos da radiação , Poliploidia
4.
Plant Mol Biol ; 60(6): 947-61, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16724263

RESUMO

This article reviews cell proliferation in the shoot apical meristem. The morphology and function of the meristem depends on the positional control of cell growth and division. The review describes the historical framework of research in this area and then discusses the regulatory pathways that might link developmental controls to the core cell cycle machinery.


Assuntos
Genes de Plantas/fisiologia , Genes cdc/fisiologia , Meristema/citologia , Brotos de Planta/citologia , Botânica/história , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Ciclina D , Ciclinas/metabolismo , Fatores de Transcrição E2F/metabolismo , Expressão Gênica , História do Século XX , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...