Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 775, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535948

RESUMO

This study provides an open-source dataset of the measured weather data, building indoor data, and system data under the different test settings. The test building is the two-story Flexible Research Platform building at the US Department of Energy's Oak Ridge National Laboratory, in Oak Ridge, Tennessee. Four heating tests and three cooling tests were conducted. The 1-min interval of weather, building indoor data, and system data from each test setting are provided. Actual weather data were collected from a weather station installed on the roof. This paper describes information on the test building and installed sensors, data collection method, and data validation. The provided dataset can be employed to understand HVAC system conditions and building indoor conditions under different HVAC system operations and the performance of building envelope without HVAC system operation using free-floating test data. Additionally, it can be used for empirical validation of the building energy modelling engine.

2.
Sci Data ; 9(1): 67, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236859

RESUMO

Most COVID-19 vaccines require temperature control for transportation and storage. Two types of vaccine have been developed by manufacturers (Pfizer and Moderna). Both vaccines are based on mRNA and lipid nanoparticles requiring low temperature storage. The Pfizer vaccine requires ultra-low temperature storage (-80 °C to -60 °C), while the Moderna vaccine requires -30 °C storage. However, the last stage of distribution is quite challenging, especially for rural or suburban areas, where local towns, pharmacy chains and hospitals may not have the infrastructure required to store the vaccine at the required temperature. In addition, there is limited data available to address ancillary challenges of the distribution framework for both transportation and storage stages, including safety concerns due to human exposure to large amounts of CO2 from dry-ice sublimation, issues due to the pressure increase caused by dry-ice sublimation, and the potential issue caused by non-uniform cryogenic temperatures. As such, there is a need for test dataset to assist the development of a quick, effective, secure, and safe solution to mitigate the challenges faced by vaccine distribution logistics.


Assuntos
Vacinas contra COVID-19 , Refrigeração , Gelo , Temperatura
3.
Int J Refrig ; 133: 313-325, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34776559

RESUMO

Most COVID-19 vaccines require ambient temperature control for transportation and storage. Both Pfizer and Moderna vaccines are based on mRNA and lipid nanoparticles requiring low temperature storage. The Pfizer vaccine requires ultra-low temperature storage (between -80 °C and -60 °C), while the Moderna vaccine requires -30 °C storage. Pfizer has designed a reusable package for transportation and storage that can keep the vaccine at the target temperature for 10 days. However, the last stage of distribution is quite challenging, especially for rural or suburban areas, where local towns, pharmacy chains and hospitals may not have the infrastructure required to store the vaccine. Also, the need for a large amount of ultra-low temperature refrigeration equipment in a short time period creates tremendous pressure on the equipment suppliers. In addition, there is limited data available to address ancillary challenges of the distribution framework for both transportation and storage stages. As such, there is a need for a quick, effective, secure, and safe solution to mitigate the challenges faced by vaccine distribution logistics. The study proposes an effective, secure, and safe ultra-low temperature refrigeration solution to resolve the vaccine distribution last mile challenge. The approach is to utilize commercially available products, such as refrigeration container units, and retrofit them to meet the vaccine storage temperature requirement. Both experimental and simulation studies are conducted to evaluate the technical merits of this solution with the ability to control temperature at -30 °C or -70 °C as part of the last mile supply chain for vaccine candidates.

4.
Nanotechnology ; 19(10): 105501, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-21817699

RESUMO

Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

5.
Rev Sci Instrum ; 78(5): 055101, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17552854

RESUMO

A major research effort has been devoted over the years for the development of chemical sensors for the detection of chemical and explosive vapors. However, the deployment of such chemical sensors will require the use of multiple sensors (probably tens of sensors) in a sensor package to achieve selective detection. In order to keep the overall detector unit small, miniature sensors with sufficient sensitivity of detection will be needed. We report sensitive detection of dimethyl methylphosphonate (DMMP), a stimulant for the nerve agents, using a miniature sensor unit based on piezoresistive microcantilevers. The sensor can detect parts-per-trillion concentrations of DMMP within 10 s exposure times. The small size of the sensor makes it ideally suited for electronic nose applications.


Assuntos
Biomimética/instrumentação , Gases/análise , Microquímica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nariz , Odorantes/análise , Compostos Organofosforados/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Microquímica/métodos , Técnicas Analíticas Microfluídicas/métodos , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA