Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 291, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631360

RESUMO

BACKGROUND: The principal toxicity of acute organophosphate (OP) pesticide poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. Because Caenorhabditis elegans is relatively resistant to OP lethality--particularly through the inhibition of AChE--studies in this nematode provide an opportunity to observe alterations in global gene expression following OP exposure that cannot be readily observed in less resistant organisms. RESULTS: We exposed cultures of worms in axenic, defined medium to dichlorvos under three exposure protocols. In the first, worms were exposed continuously throughout the experiment. In the second and third, the worms were exposed for either 2 or 8 h, the dichlorvos was washed out of the culture, and the worms were allowed to recover. We then analyzed gene expression using whole genome microarrays from RNA obtained from worms sampled at multiple time points throughout the exposure. The worms showed a time-dependent increase in the expression of genes involved in stress responses. Early in the exposure, the predominant effect was on metabolic processes, while at later times, an immune-like response and cellular repair mechanisms dominated the expression pattern. Following removal of dichlorvos, the gene expression in the worms appeared to relatively rapidly return to steady-state levels. CONCLUSION: The changes in gene expression observed in the worms following exposure to dichlorvos point towards two potential mechanisms of toxicity: inhibition of AChE and mitochondrial disruption.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Diclorvós/toxicidade , Praguicidas/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Movimento/efeitos dos fármacos , Músculos/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(44): 18179-84, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22006310

RESUMO

An effective plant alkaloid chemical defense requires a variety of transport processes, but few alkaloid transporters have been characterized at the molecular level. Previously, a gene fragment encoding a putative plasma membrane proton symporter was isolated, because it was coordinately regulated with several nicotine biosynthetic genes. Here, we show that this gene fragment corresponds to a Nicotiana tabacum gene encoding a nicotine uptake permease (NUP1). NUP1 belongs to a plant-specific class of purine uptake permease-like transporters that originated after the bryophytes but before or within the lycophytes. NUP1 expressed in yeast cells preferentially transported nicotine relative to other pyridine alkaloids, tropane alkaloids, kinetin, and adenine. NUP1-GFP primarily localized to the plasma membrane of tobacco Bright Yellow-2 protoplasts. WT NUP1 transcripts accumulated to high levels in the roots, particularly in root tips. NUP1-RNAi hairy roots had reduced NUP1 mRNA accumulation levels, reduced total nicotine levels, and increased nicotine accumulation in the hairy root culture media. Regenerated NUP1-RNAi plants showed reduced foliar and root nicotine levels as well as increased seedling root elongation rates. Thus, NUP1 affected nicotine metabolism, localization, and root growth.


Assuntos
Alcaloides/metabolismo , Nicotiana/metabolismo , Nicotina/metabolismo , Genes de Plantas , Dados de Sequência Molecular , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...