Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571926

RESUMO

T-type Ca2+ channels, generating low threshold calcium influx in neurons, play a crucial role in the function of neuronal networks and their plasticity. To further investigate their role in the complex field of research in plasticity of neurons on a molecular level, this study aimed to analyse the impact of the vascular endothelial growth factor (VEGF) on these channels. VEGF, known as a player in vasculogenesis, also shows potent influence in the central nervous system, where it elicits neuronal growth. To investigate the influence of VEGF on the three T-type Ca2+ channel isoforms, Cav3.1 (encoded by Cacna1g), Cav3.2 (encoded by Cacna1h), and Cav3.3 (encoded by Cacna1i), lasermicrodissection of in vivo-grown Purkinje cells (PCs) was performed, gene expression was analysed via qPCR and compared to in vitro-grown PCs. We investigated the VEGF receptor composition of in vivo- and in vitro-grown PCs and underlined the importance of VEGF receptor 2 for PCs. Furthermore, we performed immunostaining of T-type Ca2+ channels with in vivo- and in vitro-grown PCs and showed the distribution of T-type Ca2+ channel expression during PC development. Overall, our findings provide the first evidence that the mRNA expression of Cav3.1, Cav3.2, and Cav3.3 increases due to VEGF stimulation, which indicates an impact of VEGF on neuronal plasticity.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Cálcio/metabolismo , Cerebelo/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células de Purkinje/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo T/genética , Cerebelo/efeitos dos fármacos , Feminino , Masculino , Plasticidade Neuronal , Células de Purkinje/citologia , Células de Purkinje/efeitos dos fármacos , Ratos Wistar
2.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671638

RESUMO

The vascular endothelial growth factor (VEGF) is well known for its wide-ranging functions, not only in the vascular system, but also in the central (CNS) and peripheral nervous system (PNS). To study the role of VEGF in neuronal protection, growth and maturation processes have recently attracted much interest. These effects are mainly mediated by VEGF receptor 2 (VEGFR-2). Current studies have shown the age-dependent expression of VEGFR-2 in Purkinje cells (PC), promoting dendritogenesis in neonatal, but not in mature stages. We hypothesize that microRNAs (miRNA/miR) might be involved in the regulation of VEGFR-2 expression during the development of PC. In preliminary studies, we performed a miRNA profiling and identified miR204-5p as a potential regulator of VEGFR-2 expression. In the recent study, organotypic slice cultures of rat cerebella (postnatal day (p) 1 and 9) were cultivated and VEGFR-2 expression in PC was verified via immunohistochemistry. Additionally, PC at age p9 and p30 were isolated from cryosections by laser microdissection (LMD) to analyse VEGFR-2 expression by quantitative RT-PCR. To investigate the influence of miR204-5p on VEGFR-2 levels in PC, synthetic constructs including short hairpin (sh)-miR204-5p cassettes (miRNA-mimics), were microinjected into PC. The effects were analysed by confocal laser scanning microscopy (CLSM) and morphometric analysis. For the first time, we could show that miR204-5p has a negative effect on VEGF sensitivity in juvenile PC, resulting in a significant decrease of dendritic growth compared to untreated juvenile PC. In mature PC, the overexpression of miR204-5p leads to a shrinkage of dendrites despite VEGF treatment. The results of this study illustrate, for the first time, which miR204-5p expression has the potential to play a key role in cerebellar development by inhibiting VEGFR-2 expression in PC.


Assuntos
MicroRNAs/genética , Células de Purkinje/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Cerebelo/citologia , Cerebelo/fisiologia , Dendritos/fisiologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Microdissecção e Captura a Laser , Masculino , Técnicas de Cultura de Órgãos , Células de Purkinje/efeitos dos fármacos , Ratos Wistar , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...