Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infection ; 49(6): 1277-1287, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34642875

RESUMO

PURPOSE: Over the course of COVID-19 pandemic, evidence has accumulated that SARS-CoV-2 infections may affect multiple organs and have serious clinical sequelae, but on-site clinical examinations with non-hospitalized samples are rare. We, therefore, aimed to systematically assess the long-term health status of samples of hospitalized and non-hospitalized SARS-CoV-2 infected individuals from three regions in Germany. METHODS: The present paper describes the COVIDOM-study within the population-based cohort platform (POP) which has been established under the auspices of the NAPKON infrastructure (German National Pandemic Cohort Network) of the national Network University Medicine (NUM). Comprehensive health assessments among SARS-CoV-2 infected individuals are conducted at least 6 months after the acute infection at the study sites Kiel, Würzburg and Berlin. Potential participants were identified and contacted via the local public health authorities, irrespective of the severity of the initial infection. A harmonized examination protocol has been implemented, consisting of detailed assessments of medical history, physical examinations, and the collection of multiple biosamples (e.g., serum, plasma, saliva, urine) for future analyses. In addition, patient-reported perception of the impact of local pandemic-related measures and infection on quality-of-life are obtained. RESULTS: As of July 2021, in total 6813 individuals infected in 2020 have been invited into the COVIDOM-study. Of these, about 36% wished to participate and 1295 have already been examined at least once. CONCLUSION: NAPKON-POP COVIDOM-study complements other Long COVID studies assessing the long-term consequences of an infection with SARS-CoV-2 by providing detailed health data of population-based samples, including individuals with various degrees of disease severity. TRIAL REGISTRATION: Registered at the German registry for clinical studies (DRKS00023742).


Assuntos
COVID-19 , Qualidade de Vida , COVID-19/complicações , Humanos , Pandemias , SARS-CoV-2 , Resultado do Tratamento , Síndrome de COVID-19 Pós-Aguda
2.
Acta Physiol (Oxf) ; 222(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580772

RESUMO

AIMS: (i) To determine whether exercise-induced increases in muscle mitochondrial volume density (MitoVD ) are related to enlargement of existing mitochondria or de novo biogenesis and (ii) to establish whether measures of mitochondrial-specific enzymatic activities are valid biomarkers for exercise-induced increases in MitoVD . METHOD: Skeletal muscle samples were collected from 21 healthy males prior to and following 6 weeks of endurance training. Transmission electron microscopy was used for the estimation of mitochondrial densities and profiles. Biochemical assays, western blotting and high-resolution respirometry were applied to detect changes in specific mitochondrial functions. RESULT: MitoVD increased with 55 ± 9% (P < 0.001), whereas the number of mitochondrial profiles per area of skeletal muscle remained unchanged following training. Citrate synthase activity (CS) increased (44 ± 12%, P < 0.001); however, there were no functional changes in oxidative phosphorylation capacity (OXPHOS, CI+IIP ) or cytochrome c oxidase (COX) activity. Correlations were found between MitoVD and CS (P = 0.01; r = 0.58), OXPHOS, CI+CIIP (P = 0.01; R = 0.58) and COX (P = 0.02; R = 0.52) before training; after training, a correlation was found between MitoVD and CS activity only (P = 0.04; R = 0.49). Intrinsic respiratory capacities decreased (P < 0.05) with training when respiration was normalized to MitoVD. This was not the case when normalized to CS activity although the percentage change was comparable. CONCLUSIONS: MitoVD was increased by inducing mitochondrial enlargement rather than de novo biogenesis. CS activity may be appropriate to track training-induced changes in MitoVD.


Assuntos
Treino Aeróbico , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Adulto , Citrato (si)-Sintase/análise , Humanos , Masculino , Biogênese de Organelas , Fosforilação Oxidativa , Adulto Jovem
3.
Scand J Med Sci Sports ; 27(12): 1627-1637, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28164383

RESUMO

Interindividual variation in running and cycling exercise economy (EE) remains unexplained although studied for more than a century. This study is the first to comprehensively evaluate the importance of biochemical, structural, physiological, anthropometric, and biomechanical influences on running and cycling EE within a single study. In 22 healthy males (VO2 max range 45.5-72.1 mL·min-1 ·kg-1 ), no factor related to skeletal muscle structure (% slow-twitch fiber content, number of capillaries per fiber), mitochondrial properties (volume density, oxidative capacity, or mitochondrial efficiency), or protein content (UCP3 and MFN2 expression) explained variation in cycling and running EE among subjects. In contrast, biomechanical variables related to vertical displacement correlated well with running EE, but were not significant when taking body weight into account. Thus, running EE and body weight were correlated (R2 =.94; P<.001), but was lower for cycling EE (R2 =.23; P<.023). To separate biomechanical determinants of running EE, we contrasted individual running and cycling EE considering that during cycle ergometer exercise, the biomechanical influence on EE would be small because of the fixed movement pattern. Differences in cycling and running exercise protocols, for example, related to biomechanics, play however only a secondary role in determining EE. There was no evidence for an impact of structural or functional skeletal muscle variables on EE. Body weight was the main determinant of EE explaining 94% of variance in running EE, although more than 50% of the variability of cycling EE remains unexplained.


Assuntos
Antropometria , Ciclismo/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Adulto , Fenômenos Biomecânicos , Composição Corporal , Peso Corporal , Estudos Transversais , Metabolismo Energético , Teste de Esforço , Humanos , Masculino , Mitocôndrias Musculares/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Consumo de Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...