Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(16): 166001, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154635

RESUMO

Recently, a superconducting (SC) transition from low-field (LF) to high-field (HF) SC states was reported in CeRh_{2}As_{2}, indicating the existence of multiple SC states. It has been theoretically noted that the existence of two Ce sites in the unit cell, the so-called sublattice degrees of freedom owing to the local inversion symmetry breaking at the Ce sites, can lead to the appearance of multiple SC phases even under an interaction inducing spin-singlet superconductivity. CeRh_{2}As_{2} is considered as the first example of multiple SC phases owing to this sublattice degree of freedom. However, microscopic information about the SC states has not yet been reported. In this study, we measured the SC spin susceptibility at two crystallographically inequivalent As sites using nuclear magnetic resonance for various magnetic fields. Our experimental results strongly indicate a spin-singlet state in both SC phases. In addition, the antiferromagnetic phase, which appears within the SC phase, only coexists with the LF SC phase; there is no sign of magnetic ordering in the HF SC phase. The present Letter reveals unique SC properties originating from the locally noncentrosymmetric characteristics.

2.
Phys Rev Lett ; 128(5): 057002, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179930

RESUMO

Spatial inversion symmetry in crystal structures is closely related to the superconducting (SC) and magnetic properties of materials. Recently, several theoretical proposals that predict various interesting phenomena caused by the breaking of the local inversion symmetry have been presented. However, experimental validation has not yet progressed owing to the lack of model materials. Here we present evidence for antiferromagnetic (AFM) order in CeRh_{2}As_{2} (SC transition temperature T_{SC}∼0.37 K), wherein the Ce site breaks the local inversion symmetry. The evidence is based on the observation of different extents of broadening of the nuclear quadrupole resonance spectrum at two crystallographically inequivalent As sites. This AFM ordering breaks the inversion symmetry of this system, resulting in the activation of an odd-parity magnetic multipole. Moreover, the onset of antiferromagnetism T_{N} within an SC phase, with T_{N}

3.
J Phys Condens Matter ; 31(30): 305602, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30933934

RESUMO

We present a detailed study of the temperature evolution of the crystal structure, specific heat, magnetic susceptibility and resistivity of single crystals of the paradigmatic valence-fluctuating compound [Formula: see text]. A comparison to stable-valent isostructural compounds [Formula: see text] (with Eu3+), and [Formula: see text], (with Eu2+) reveals an anomalously large thermal expansion indicative of the lattice softening associated to valence fluctuations. A marked broad peak at temperatures around 65-75 K is observed in specific heat, susceptibility and the derivative of resistivity, as thermal energy becomes large enough to excite Eu into a divalent state, which localizes one f electron and increases scattering of conduction electrons. In addition, the intermediate valence at low temperatures manifests in a moderately renormalized electron mass, with enhanced values of the Sommerfeld coefficient in the specific heat and a Fermi-liquid-like dependence of resistivity at low temperatures. The high residual magnetic susceptibility is mainly ascribed to a Van Vleck contribution. Although the intermediate/fluctuating valence duality is to some extent represented in the interconfiguration fluctuation model commonly used to analyze data on valence-fluctuating systems, we show that this model cannot describe the different physical properties of [Formula: see text] with a single set of parameters.

4.
Sci Adv ; 3(6): e1601667, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28691082

RESUMO

In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

5.
Nano Lett ; 17(2): 811-820, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28032768

RESUMO

Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.

6.
J Phys Condens Matter ; 28(11): 115601, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26895077

RESUMO

We synthesized a high-quality sample of the boride Eu4Pd(29+x)B8 (x = 0.76) and studied its structural and physical properties. Its tetragonal structure was solved by direct methods and confirmed to belong to the Eu4Pd29B8 type. All studied physical properties indicate a valence fluctuating Eu state, with a valence decreasing continuously from about 2.9 at 5 K to 2.7 at 300 K. Maxima in the T dependence of the susceptibility and thermopower at around 135 K and 120 K, respectively, indicate a valence fluctuation energy scale on the order of 300 K. Analysis of the magnetic susceptibility evidences some inconsistencies when using the ionic interconfigurational fluctuation (ICF) model, thus suggesting a stronger relevance of hybridization between 4f and valence electrons compared to standard valence-fluctuating Eu systems.

7.
Science ; 351(6272): 485-8, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823424

RESUMO

The smooth disappearance of antiferromagnetic order in strongly correlated metals commonly furnishes the development of unconventional superconductivity. The canonical heavy-electron compound YbRh2Si2 seems to represent an apparent exception from this quantum critical paradigm in that it is not a superconductor at temperature T ≥ 10 millikelvin (mK). Here we report magnetic and calorimetric measurements on YbRh2Si2, down to temperatures as low as T ≈ 1 mK. The data reveal the development of nuclear antiferromagnetic order slightly above 2 mK and of heavy-electron superconductivity almost concomitantly with this order. Our results demonstrate that superconductivity in the vicinity of quantum criticality is a general phenomenon.

8.
Nat Commun ; 6: 8680, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493166

RESUMO

Adiabatic demagnetization is currently gaining strong interest in searching for alternatives to (3)He-based refrigeration techniques for achieving temperatures below 2 K. The main reasons for that are the recent shortage and high price of the rare helium isotope (3)He. Here we report the discovery of a large magnetocaloric effect in the intermetallic compound YbPt2Sn, which allows adiabatic demagnetization cooling from 2 K down to 0.2 K. We demonstrate this with a home-made refrigerator. Other materials, for example, paramagnetic salts, are commonly used for the same purpose but none of them is metallic, a severe limitation for low-temperature applications. YbPt2Sn is a good metal with an extremely rare weak magnetic coupling between the Yb atoms, which prevents them from ordering above 0.25 K, leaving enough entropy free for use in adiabatic demagnetization cooling. The large volumetric entropy capacity of YbPt2Sn guarantees also a good cooling power.

9.
Phys Rev Lett ; 112(6): 067002, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24580704

RESUMO

Superconductivity in the heavy-fermion compound CeCu2Si2 is a prototypical example of Cooper pairs formed by strongly correlated electrons. For more than 30 years, it has been believed to arise from nodal d-wave pairing mediated by a magnetic glue. Here, we report a detailed study of the specific heat and magnetization at low temperatures for a high-quality single crystal. Unexpectedly, the specific-heat measurements exhibit exponential decay with a two-gap feature in its temperature dependence, along with a linear dependence as a function of magnetic field and the absence of oscillations in the field angle, reminiscent of multiband full-gap superconductivity. In addition, we find anomalous behavior at high fields, attributed to a strong Pauli paramagnetic effect. A low quasiparticle density of states at low energies with a multiband Fermi-surface topology would open a new door into electron pairing in CeCu2Si2.

10.
J Phys Condens Matter ; 26(4): 046002, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24356002

RESUMO

In divalent Eu systems, the 4f local moment has a pure spin state J = S = 7/2. Although the absence of orbital moment precludes crystal electric field effects, we report a sizable magnetic anisotropy in single crystals of EuRh2Si2. We observed a surprisingly complex magnetic behavior with three successive phase transitions. The Eu(2+) moments order in a probably amplitude-modulated structure below 24.5 K, undergoing a further transition to a structure that is possibly of the equal-moment type, and a first order transition at lower temperatures, presumably into a spin spiral structure. The sharp metamagnetic transition observed at low fields applied perpendicular to the hard axis is consistent with a change from a spiral to a fan structure. These magnetic structures are presumably formed by ferromagnetic planes perpendicular to the c axis, stacked antiferromagnetically along c but not of type I, at least just below the ordering temperature. Since EuRh2Si2 is isoelectronic and isostructural to EuFe2As2 at room temperature, our results are also relevant for the complex Eu-magnetism observed there, especially for the transition from an antiferromagnetic to a ferromagnetic state observed in EuFe2P2 upon substituting As by P.

11.
Science ; 339(6122): 933-6, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23430650

RESUMO

Unconventional superconductivity and other previously unknown phases of matter exist in the vicinity of a quantum critical point (QCP): a continuous phase change of matter at absolute zero. Intensive theoretical and experimental investigations on itinerant systems have shown that metallic ferromagnets tend to develop via either a first-order phase transition or through the formation of intermediate superconducting or inhomogeneous magnetic phases. Here, through precision low-temperature measurements, we show that the Grüneisen ratio of the heavy fermion metallic ferromagnet YbNi(4)(P(0.92)As(0.08))(2) diverges upon cooling to T = 0, indicating a ferromagnetic QCP. Our observation that this kind of instability, which is forbidden in d-electron metals, occurs in a heavy fermion system will have a large impact on the studies of quantum critical materials.

12.
Nature ; 484(7395): 493-7, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22538612

RESUMO

A quantum critical point (QCP) arises when a continuous transition between competing phases occurs at zero temperature. Collective excitations at magnetic QCPs give rise to metallic properties that strongly deviate from the expectations of Landau's Fermi-liquid description, which is the standard theory of electron correlations in metals. Central to this theory is the notion of quasiparticles, electronic excitations that possess the quantum numbers of the non-interacting electrons. Here we report measurements of thermal and electrical transport across the field-induced magnetic QCP in the heavy-fermion compound YbRh(2)Si(2) (refs 2, 3). We show that the ratio of the thermal to electrical conductivities at the zero-temperature limit obeys the Wiedemann-Franz law for magnetic fields above the critical field at which the QCP is attained. This is also expected for magnetic fields below the critical field, where weak antiferromagnetic order and a Fermi-liquid phase form below 0.07 K (at zero field). At the critical field, however, the low-temperature electrical conductivity exceeds the thermal conductivity by about 10 per cent, suggestive of a non-Fermi-liquid ground state. This apparent violation of the Wiedemann-Franz law provides evidence for an unconventional type of QCP at which the fundamental concept of Landau quasiparticles no longer holds. These results imply that Landau quasiparticles break up, and that the origin of this disintegration is inelastic scattering associated with electronic quantum critical fluctuations--these insights could be relevant to understanding other deviations from Fermi-liquid behaviour frequently observed in various classes of correlated materials.

13.
Phys Rev Lett ; 108(6): 066405, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401095

RESUMO

Thermodynamic and transport properties of the La-diluted Kondo lattice CeNi(2)Ge(2) were studied in a wide temperature range. The Ce-rich alloys Ce(1-x)La(x)Ni(2)Ge(2) were found to exhibit distinct features of the coherent heavy Fermi liquid. At intermediate compositions (0.7≤x≤0.9), non-Fermi liquid properties have been observed, followed by the local Fermi liquid behavior in the dilute limit. The 4f-electron contribution to the specific heat was found to follow the predictions of the Kondo-impurity model in both the local as well as the coherent regimes, with the characteristic Kondo temperature decreasing rapidly from about 30 K for the parent compound CeNi(2)Ge(2) to about 1 K in the most dilute samples. The specific heat does not show any evidence for the emergence of a new characteristic energy scale related to the formation of the coherent Kondo lattice.

14.
J Phys Condens Matter ; 23(37): 375601, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21878716

RESUMO

We have succeeded in growing high-quality single crystals of the valence-fluctuating system EuIr(2)Si(2), the divalent Eu system EuRh(2)Si(2) and the substitutional alloy Eu(Rh(1-x)Ir(x))(2)Si(2) across the range 0 < x < 1, which we characterized by means of x-ray diffraction, energy-dispersive x-ray spectroscopy, specific heat, magnetization and resistivity measurements. On increasing x, the divalent Eu ground state subsists up to x = 0.25 with a slight increase in Néel temperature, while for 0.3≤x < 0.7 a sharp hysteretic change in susceptibility and resistivity marks the first-order valence transition. For x≳0.7 the broad feature observed in the physical properties is characteristic of the continuous valence evolution beyond the critical end point of the valence transition line, and the resistivity is reminiscent of Kondo-like behaviour while the Sommerfeld coefficient indicates a mass renormalization of at least a factor of 8. The resulting phase diagram is similar to those reported for polycrystalline Eu(Pd(1-x)Au(x))(2)Si(2) and EuNi(2)(Si(1-x)Ge(x))(2), confirming its generic character for Eu systems, and markedly different to those of homologue Ce and Yb systems, which present a continuous suppression of the antiferromagnetism accompanied by a very smooth evolution of the valence. We discuss these differences and suggest them to be related to the large polarization energy of the Eu half-filled 4f shell. We further argue that the changes in the rare earth valence between RRh(2)Si(2) and RIr(2)Si(2) (R = Ce, Eu, Yb) are governed by a purely electronic effect and not by a volume effect.


Assuntos
Elétrons , Európio/química , Irídio/química , Rutênio/química , Silício/química , Cristalização , Magnetismo , Temperatura , Difração de Raios X
15.
Phys Rev Lett ; 106(24): 246401, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770582

RESUMO

We report on the magnetic excitation spectrum in the normal state of the heavy-fermion superconductor CeCu92)Si(2) on approaching the quantum critical point (QCP). The magnetic response in the superconducting state is characterized by a transfer of spectral weight to energies above a spin excitation gap. In the normal state, a slowing-down of the quasielastic magnetic response is observed, which conforms to the scaling expected for a QCP of spin-density-wave type. This interpretation is substantiated by an analysis of specific heat data and the momentum dependence of the magnetic excitation spectrum. Our study represents the first direct observation of an almost critical slowing-down of the normal state magnetic response at a QCP when suppressing superconductivity. The results strongly imply that the coupling of Cooper pairs in CeCu(2)Si(2) is mediated by overdamped spin fluctuations.

16.
J Phys Condens Matter ; 23(9): 094216, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21339569

RESUMO

YbRh2Si2 is a model system for quantum criticality. In particular, Hall effect measurements helped identify the unconventional nature of its quantum critical point. Here, we present a high-resolution study of the Hall effect and magnetoresistivity on samples of different quality. We find a robust crossover on top of a sample dependent linear background contribution. Our detailed analysis provides a complete characterization of the crossover in terms of its position, width, and height. Importantly, we find in the extrapolation to zero temperature a discontinuity of the Hall coefficient occurring at the quantum critical point for all samples. In particular, the height of the jump in the Hall coefficient remains finite in the limit of zero temperature. Hence, our data solidify the conclusion of a collapsing Fermi surface. Finally, we contrast our results to the smooth Hall effect evolution seen in chromium, the prototype system for a spin-density-wave quantum critical point.

17.
Proc Natl Acad Sci U S A ; 107(33): 14547-51, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20668246

RESUMO

Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh(2)Si(2), a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems.


Assuntos
Metais/química , Modelos Químicos , Transição de Fase , Algoritmos , Fenômenos Químicos , Cinética , Magnetismo , Rubídio/química , Dióxido de Silício/química , Temperatura de Transição , Itérbio/química
18.
Phys Rev Lett ; 104(9): 096401, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366998

RESUMO

We present low-temperature thermopower results, S(T), on the heavy-fermion compound YbRh2Si2 in the vicinity of its field-induced quantum critical point (QCP). At B=0, a logarithmic increase of -S(T)/T between 1 and 0.1 K reveals strong non-Fermi-liquid behavior. A pronounced downturn of -S(T)/T below T{max}=0.1 K and a sign change from negative to positive S(T) values at T{0} approximately 30 mK are observed on the low-field side of the Kondo breakdown crossover line T{*}(B). In the field-induced, heavy Landau-Fermi-liquid regime, S(T)/T assumes constant, negative values below T{LFL}. A pronounced crossover in the -S(B)/T isotherms at T{*}(B) sharpens with decreasing T and seems to evolve toward a steplike function for T-->0. This is attributed to an abrupt change of the Fermi volume upon crossing the unconventional QCP of YbRh2Si2.

19.
Acta Crystallogr C ; 62(Pt 10): i88-90, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17008726

RESUMO

The structure of dilead vanadium oxide bis(phosphate) contains corrugated layers formed by VO5 square pyramids oriented in opposite directions in a chessboard fashion. The pyramids are connected by tetrahedral PO4 groups. The layers are separated by the Pb atoms and isolated PO4 tetrahedra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...