Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 14(1): 016009, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31703231

RESUMO

Due to several sources of potential variability associated with exhaled breath bag sampling procedures for off-line analysis, the Respiration Collector for in vitro Analysis (ReCIVA) sampler was developed. Although designed to improve upon several pitfalls of sampling with exhaled breath bags, the ReCIVA remains a minimally studied research tool. In this manuscript, several attributes of the ReCIVA sampler are investigated among three individual tests, such as background contamination, control software version, performance of different adsorbent tubes, duplicate sample production, and comparison to exhaled breath bags. The data shows greater than a 58% reduction in background siloxanes can be achieved with submersion of ReCIVA masks in ethyl alcohol or baking the masks at a high temperature (200 °C). The results illustrate the ReCIVA control software version plays a key role in the flow rates applied to thermal desorption (TD) tubes. Using exhaled isoprene as a representative analyte, the data suggest duplicate samples among ReCIVA pump banks can be achieved using two different thermal desorption tubes, Tenax TA and Tenax/Carbograph 5TD, when using an updated control software and manually calibrating the ReCIVA pumps to uniform flow rates (Tenax p = 0.3869, 5TD p = 0.3131). Additionally, using the updated control software and manual ReCIVA flow calibration, the data suggest the ReCIVA can produce statistically similar results among TD tube types (p = 0.3824) and compared to standard exhaled breath bags (p = 0.1534). Collectively, these results establish a method for manually calibrating the flow of the ReCIVA device to allow for the most consistent results. These data support further experimentation into the use of the ReCIVA sampler for exhaled breath research.


Assuntos
Testes Respiratórios/métodos , Butadienos/análise , Calibragem , Expiração , Hemiterpenos/análise , Humanos , Masculino , Padrões de Referência , Siloxanas/química , Manejo de Espécimes
2.
ACS Synth Biol ; 8(9): 2080-2091, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31386355

RESUMO

Cell-free protein synthesis (CFPS) platforms, once primarily a research tool to produce difficult to express proteins, are increasingly being pursued by the synthetic biology community for applications including biomanufacturing, rapid screening systems, and field-ready sensors. While consistency within individual studies is apparent in the literature, challenges with reproducing results between laboratories, or even between individuals within a laboratory, are discussed openly by practitioners. As the field continues to grow and move toward applications, a quantitative understanding of expected variability for CFPS and the relative contribution of underlying sources will become increasingly important. Here we offer the first quantitative assessment of interlaboratory variability in CFPS. Three laboratories implemented a single CFPS protocol and performed a series of exchanges, both of material and personnel, designed to quantify relative contributions to variability associated with the site, operator, cell extract preparation, and supplemental reagent preparation. We found that materials prepared at each laboratory, exchanged pairwise, and tested at each site resulted in 40.3% coefficient of variation compared to 7.64% for a single operator across days using a single set of materials. Reagent preparations contributed significantly to observed variability; extract preparations, however, surprisingly did not explain any of the observed variability, even when prepared in different laboratories by different operators. Subsequent exchanges showed that both the site and the operator each contributed to observed interlaboratory variability. In addition to providing the first quantitative assessment of interlaboratory variability in CFPS, these results establish a baseline for individual operator variability across days that can be used as an initial benchmark for community-driven standardization efforts. We anticipate that our results will narrow future avenues of investigation to develop best practices that will ultimately drive down interlaboratory variability, accelerating research progress and informing the suitability of CFPS for real-world applications.


Assuntos
Sistema Livre de Células , Proteínas/metabolismo , DNA/metabolismo , Laboratórios/normas , Biossíntese de Proteínas , Reprodutibilidade dos Testes
3.
PLoS One ; 13(11): e0203133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383773

RESUMO

Sweat is a biofluid with several attractive attributes. However, investigation into sweat for biomarker discovery applications is still in its infancy. To add support for the use of sweat as a non-invasive media for human performance monitoring, volunteer participants were subjected to a physical exertion model using a treadmill. Following exercise, sweat was collected, aliquotted, and analyzed for metabolite and protein content via high-resolution mass spectrometry. Overall, the proteomic analysis illustrates significant enrichment steps will be required for proteomic biomarker discovery from single sweat samples as protein abundance is low in this medium. Furthermore, the results indicate a potential for protein degradation, or a large number of low molecular weight protein/peptides, in these samples. Metabolomic analysis shows a strong correlation in the overall abundance among sweat metabolites. Finally, hierarchical clustering of participant metabolite abundances show trends emerging, although no significant trends were observed (alpha = 0.8, lambda = 1 standard error via cross validation). However, these data suggest with a greater number of biological replicates, stronger, statistically significant results, can be obtained. Collectively, this study represents the first to simultaneously use both proteomic and metabolomic analysis to investigate sweat. These data highlight several pitfalls of sweat analysis for biomarker discovery applications.


Assuntos
Exercício Físico , Metabolômica , Proteômica , Suor/metabolismo , Adolescente , Adulto , Humanos , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Militares , Resistência Física , Projetos Piloto , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Suor/química , Adulto Jovem
4.
J Breath Res ; 11(4): 047111, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29018179

RESUMO

Hypoxia-like incidents in-flight have increased over the past decade causing severe safety concerns across the aviation community. As a result, the need to monitor flight crews in real-time for the onset of hypoxic conditions is paramount for continued aeronautical safety. Here, hypoxic events were simulated in the laboratory via a reduced oxygen-breathing device to determine the effect of recovery gas oxygen concentration (21% and 100%) on exhaled breath volatile organic compound composition. Data from samples collected both serially (throughout the exposure), prior to, and following exposures yielded 326 statistically significant features, 203 of which were unique. Of those, 72 features were tentatively identified while 51 were verified with authentic standards. A comparison of samples collected serially between recovery and hypoxia time points shows a statistically significant reduction in exhaled breath isoprene (2-methyl-1,3-butadiene, log2 FC -0.399, p = 0.005, FDR = 0.034, q = 0.033), however no significant difference in isoprene abundance was observed when comparing recovery gases (21% or 100% O2, p = 0.152). Furthermore, examination of pre-/post-exposure 1 l bag breath samples illustrate an overall increase in exhaled isoprene abundance post-exposure (log2 FC 0.393, p = 0.005, FDR = 0.094, q = 0.033) but again no significant difference between recovery gas (21% and 100%, p = 0.798) was observed. A statistically significant difference in trend was observed between isoprene abundance and recovery gases O2 concentration when plotted against minimum oxygen saturation (p = 0.0419 100% O2, p = 0.7034 21% O2). Collectively, these results suggest exhaled isoprene is dynamic in the laboratory ROBD setup and additional experimentation will be required to fully understand the dynamics of isoprene in response to acute hypoxic stress.


Assuntos
Testes Respiratórios/métodos , Butadienos/análise , Expiração , Hemiterpenos/análise , Hipóxia/diagnóstico , Pentanos/análise , Estresse Fisiológico , Adulto , Humanos , Hipóxia/sangue , Masculino , Oxigênio/sangue , Padrões de Referência , Fatores de Tempo , Adulto Jovem
5.
J Breath Res ; 10(4): 046008, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27732570

RESUMO

Exhaled breath is coming to the forefront of non-invasive biomarker discovery efforts. Concentration of exhaled breath volatile organic compounds (VOCs) on thermal desorption (TD) tubes with subsequent analysis by gas chromatography-mass spectrometry (GC-MS) has dominated this field. As discovery experimentation increases in frequency, the need to evaluate the long-term storage stability of exhaled breath VOCs on thermal desorption adsorbent material is critical. To address this gap, exhaled breath was loaded on Tenax TA thermal desorption tubes and stored at various temperature conditions. 74 VOCs, 56 of which have been previously uncharacterized, were monitored using GC-MS over a period of 31 d. The results suggest that storage of exhaled breath at cold temperatures (4 °C) provides the most consistent retention of exhaled breath VOCs temporally. Samples were determined to be stable up to 14 d across storage conditions prior to gaining or losing 1-2 standard deviations in abundance. Through gene set enrichment analysis (GSEA), certain chemical classes were found to be positively (acids) or negatively (sulfur-containing) enriched temporally. By means of field sample collections, the effect of storage and shipping was found to be similar to those studies preformed in the laboratory at 4 °C. Collectively this study not only provides recommendations for proper storage conditions and storage length, but also illustrates the use of GSEA to exhaled breath based GC-MS data.


Assuntos
Testes Respiratórios/métodos , Expiração , Polímeros/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Análise de Componente Principal , Temperatura , Compostos Orgânicos Voláteis/análise
6.
J Breath Res ; 9(4): 047103, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26505091

RESUMO

Pilots have reported experiencing in-flight hypoxic-like symptoms since the inception of high-altitude aviation. As a result, the need to monitor pilots, in-flight, for the onset of hypoxic conditions is of great interest to the aviation community. We propose that exhaled breath is an appropriate non-invasive medium for monitoring pilot hypoxic risk through volatile organic compound (VOC) analysis. To identify changes in the exhaled breath VOCs produced during periods of reduced O2 levels, volunteers were exposed to simulated flight profiles, i.e. sea level for 5 min, O2 levels found at elevated altitudes for 5 min or placebo and 5 min at 100% O2 recovery gas, using a modified flight mask interfaced with a reduced O2 breathing device. During the course of these test events, time series breath samples from the flight mask and pre/post bag samples were collected and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven compounds (pentanal, 4-butyrolactone, 2-pentanone, 2-hexanone, 2-cyclopenten-1-one, 3-methylheptane and 2-heptanone) were found to significantly change in response to hypoxic conditions. Additionally, the isoprene, 2-methyl-1,3-butadiene, was found to increase following the overall exposure profile. This study establishes an experimental means for monitoring changes in VOCs in response to hypoxic conditions, a computational workflow for compound analysis via the Metabolite Differentiation and Discovery Lab and MatLab(©) software and identifies potential volatile organic compound biomarkers of hypoxia exposure.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Expiração , Hipóxia/diagnóstico , Adulto , Butadienos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hemiterpenos/análise , Humanos , Masculino , Metaboloma , Oxigênio/análise , Pentanos/análise , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
7.
J Sep Sci ; 38(14): 2463-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25944350

RESUMO

Volatile organic compounds were collected and analyzed from a variety of indoor and outdoor air samples to test whether human-derived compounds can be readily detected in the air and if they can be associated with human occupancy or presence. Compounds were captured with thermal desorption tubes and then analyzed by gas chromatography with mass spectrometry. Isoprene, a major volatile organic compound in exhaled breath, was shown to be the best indicator of human presence. Acetone, another major breath-borne compound, was higher in unoccupied or minimally occupied areas than in human-occupied areas, indicating that its majority may be derived from exogenous sources. The association of endogenous skin-derived compounds with human occupancy was not significant. In contrast, numerous compounds that are found in foods and consumer products were detected at elevated levels in the occupied areas. Our results revealed that isoprene and many exogenous volatile organic compounds consumed by humans are emitted at levels sufficient for detection in the air, which may be indicative of human presence.


Assuntos
Testes Respiratórios/métodos , Butadienos/análise , Hemiterpenos/análise , Pentanos/análise , Compostos Orgânicos Voláteis/análise , Acetona/análise , Ar , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Reprodutibilidade dos Testes , Respiração , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...