Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 132(6): 1370-1378, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482322

RESUMO

Specific ventilation imaging (SVI) measures the spatial distribution of specific ventilation (SV) in the lung with MRI by using inhaled oxygen as a contrast agent. Because of the inherently low signal-to-noise ratio in the technique, multiple switches between inspiring air and O2 are utilized, and the high spatial resolution SV distribution is determined as an average over the entire imaging period (∼20 min). We hypothesized that a trade-off between spatial and temporal resolution could allow imaging at a higher temporal resolution, at the cost of a coarser, yet acceptable, spatial resolution. The appropriate window length and spatial resolution compromise were determined by generating synthetic data with signal- and contrast-to-noise characteristics reflective of that in previously published experimental data, with a known and unchanging distribution of SV, and showed that acceptable results could be obtained in an imaging period of ∼7 min (80 breaths), with a spatial resolution of ∼1 cm3. Previously published data were then reanalyzed. The average heterogeneity of the temporally resolved maps of SV was not different from the previous overall analysis, however, the temporally resolved maps were less effective at detecting the amount of bronchoconstriction resulting from methacholine administration. The results further indicated that the initial response to inhaled methacholine and subsequent inhalation of albuterol were largely complete within ∼22 min and ∼9 min, respectively, although there was a tendency for an ongoing developing effect in both cases. These results suggest that it is feasible to use a shortened SVI protocol, with a modest sacrifice in spatial resolution, to measure temporally dynamic processes.NEW & NOTEWORTHY Dynamic imaging providing maps of specific ventilation with a temporal resolution of ∼7 min with a spatial resolution of ∼1 cm3 using MRI was shown to be practical. The technique provides an ionizing radiation free means of temporally following the spatial pattern of specific ventilation. Reanalysis of previously published data showed that the effects of inhaled methacholine and albuterol were largely complete at ∼22 min and ∼9 min, respectively after administration.


Assuntos
Broncoconstrição , Pulmão , Albuterol , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Cloreto de Metacolina , Oxigênio
2.
J Appl Physiol (1985) ; 129(5): 1152-1160, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853114

RESUMO

Measurement of ventilation heterogeneity with the multiple-breath nitrogen washout (MBW) is usually performed using controlled breathing with a fixed tidal volume and breathing frequency. However, it is unclear whether controlled breathing alters the underlying ventilatory heterogeneity. We hypothesized that the width of the specific ventilation distribution (a measure of heterogeneity) would be greater in tests performed during free breathing compared with those performed using controlled breathing. Eight normal subjects (age range = 23-50 yr, 5 female/3 male) twice underwent MRI-based specific ventilation imaging consisting of five repeated cycles with the inspired gas switching between 21% and 100% O2 every ~2 min (total imaging time = ~20 min). In each session, tests were performed with free breathing (FB, no constraints) and controlled breathing (CB) at a respiratory rate of 12 breaths/min and no tidal volume control. The specific ventilation (SV) distribution in a mid-sagittal slice of the right lung was calculated, and the heterogeneity was calculated as the full width at half max of a Gaussian distribution fitted on a log scale (SV width). Free breathing resulted in a range of breathing frequencies from 8.7 to 15.9 breaths/min (mean = 11.5 ± 2.2, P = 0.62, compared with CB). Heterogeneity (SV width) was unchanged by controlled breathing (FB: 0.38 ± 0.12; CB: 0.34 ± 0.09, P = 0.18, repeated-measures ANOVA). The imposition of a controlled breathing frequency did not significantly affect the heterogeneity of ventilation in the normal lung, suggesting that MBW and specific ventilation imaging as typically performed provide an unperturbed measure of ventilatory heterogeneity.NEW & NOTEWORTHY By using MRI-based specific ventilation imaging (SVI), we showed that the heterogeneity of specific ventilation was not different comparing free breathing and breathing with the imposition of a fixed breathing frequency of 12 breaths/min. Thus, multiple-breath washout and SVI as typically performed provide an unperturbed measure of ventilatory heterogeneity.


Assuntos
Pulmão , Respiração , Adulto , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Volume de Ventilação Pulmonar , Adulto Jovem
3.
J Vis Exp ; (148)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31233033

RESUMO

Specific ventilation imaging (SVI) is a functional magnetic resonance imaging technique capable of quantifying specific ventilation - the ratio of the fresh gas entering a lung region divided by the region's end-expiratory volume - in the human lung, using only inhaled oxygen as a contrast agent. Regional quantification of specific ventilation has the potential to help identify areas of pathologic lung function. Oxygen in solution in tissue shortens the tissue's longitudinal relaxation time (T1), and thus a change in tissue oxygenation can be detected as a change in T1-weighted signal with an inversion recovery acquired image. Following an abrupt change between two concentrations of inspired oxygen, the rate at which lung tissue within a voxel equilibrates to a new steady-state reflects the rate at which resident gas is being replaced by inhaled gas. This rate is determined by specific ventilation. To elicit this sudden change in oxygenation, subjects alternately breathe 20-breath blocks of air (21% oxygen) and 100% oxygen while in the MRI scanner. A stepwise change in inspired oxygen fraction is achieved through use of a custom three-dimensional (3D)-printed flow bypass system with a manual switch during a short end-expiratory breath hold. To detect the corresponding change in T1, a global inversion pulse followed by a single shot fast spin echo sequence was used to acquire two-dimensional T1-weighted images in a 1.5 T MRI scanner, using an eight-element torso coil. Both single slice and multi-slice imaging are possible, with slightly different imaging parameters. Quantification of specific ventilation is achieved by correlating the time-course of signal intensity for each lung voxel with a library of simulated responses to the air/oxygen stimulus. SVI estimations of specific ventilation heterogeneity have been validated against multiple breath washout and proved to accurately determine the heterogeneity of the specific ventilation distribution.


Assuntos
Meios de Contraste/química , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Oxigênio/química , Espectroscopia de Prótons por Ressonância Magnética , Respiração , Adulto , Asma/diagnóstico por imagem , Asma/fisiopatologia , Broncoconstrição , Feminino , Humanos , Masculino
4.
J Appl Physiol (1985) ; 125(6): 1720-1730, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188793

RESUMO

The location of lung regions with compromised ventilation (often called ventilation defects) during a bronchoconstriction event may be influenced by posture. We aimed to determine the effect of prone versus supine posture on the spatial pattern of methacholine-induced bronchoconstriction in six healthy adults (ages 21-41, 3 women) using specific ventilation imaging. Three postural conditions were chosen to assign the effect of posture to the drug administration and/or imaging phase of the experiment: supine methacholine administration followed by supine imaging, prone methacholine administration followed by supine imaging, and prone methacholine administration followed by prone imaging. The two conditions in which imaging was performed supine had similar spatial patterns of bronchoconstriction despite a change in posture during methacholine administration; the odds ratio for recurrent constriction was mean (SD) = 7.4 (3.9). Conversely, dissimilar spatial patterns of bronchoconstriction emerged when posture during imaging was changed; the odds ratio for recurrent constriction between the prone methacholine/supine imaging condition and the prone methacholine/prone imaging condition was 1.2 (0.9). Logistic regression showed that height above the dependent lung border was a significant negative predictor of constriction in the two supine imaging conditions (P < 0.001 for each) but not in the prone imaging condition (P = 0.20). These results show that the spatial pattern of methacholine bronchoconstriction is recurrent in the supine posture, regardless of whether methacholine is given prone or supine but that prone posture during imaging eliminates that recurrent pattern and reduces its dependence on gravitational height.NEW & NOTEWORTHY The spatial pattern of methacholine bronchoconstriction in the supine posture is recurrent and skewed toward the dependent lung, regardless of whether inhaled methacholine is administered while supine or while prone. However, both the recurrent pattern and the gravitational skew are eliminated if imaging is performed prone. These results suggest that gravitational influence on regional lung inflation and airway topography at the time of measurement play a role in determining regional bronchoconstriction in the healthy lung.

5.
Physiol Rep ; 6(7): e13659, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659198

RESUMO

Specific ventilation imaging (SVI) proposes that using oxygen-enhanced 1H MRI to capture signal change as subjects alternatively breathe room air and 100% O2 provides an estimate of specific ventilation distribution in the lung. How well this technique measures SV and the effect of currently adopted approaches of the technique on resulting SV measurement is open for further exploration. We investigated (1) How well does imaging a single sagittal lung slice represent whole lung SV? (2) What is the influence of pulmonary venous blood on the measured MRI signal and resultant SVI measure? and (3) How does inclusion of misaligned images affect SVI measurement? In this study, we utilized two patient-based in silico models of ventilation, perfusion, and gas exchange to address these questions for normal healthy lungs. Simulation results from the two healthy young subjects show that imaging a single slice is generally representative of whole lung SV distribution, with a calculated SV gradient within 90% of that calculated for whole lung distributions. Contribution of O2 from the venous circulation results in overestimation of SV at a regional level where major pulmonary veins cross the imaging plane, resulting in a 10% increase in SV gradient for the imaging slice. A worst-case scenario simulation of image misalignment increased the SV gradient by 11.4% for the imaged slice.


Assuntos
Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ventilação Pulmonar/fisiologia , Humanos , Pulmão/fisiologia
6.
J Aerosol Med Pulm Drug Deliv ; 31(2): 78-87, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29451844

RESUMO

The 21st Congress for the International Society for Aerosols in Medicine included, for the first time, a session on Pulmonary Delivery of Therapeutic and Diagnostic Gases. The rationale for such a session within ISAM is that the pulmonary delivery of gaseous drugs in many cases targets the same therapeutic areas as aerosol drug delivery, and is in many scientific and technical aspects similar to aerosol drug delivery. This article serves as a report on the recent ISAM congress session providing a synopsis of each of the presentations. The topics covered are the conception, testing, and development of the use of nitric oxide to treat pulmonary hypertension; the use of realistic adult nasal replicas to evaluate the performance of pulsed oxygen delivery devices; an overview of several diagnostic gas modalities; and the use of inhaled oxygen as a proton magnetic resonance imaging (MRI) contrast agent for imaging temporal changes in the distribution of specific ventilation during recovery from bronchoconstriction. Themes common to these diverse applications of inhaled gases in medicine are discussed, along with future perspectives on development of therapeutic and diagnostic gases.


Assuntos
Sistemas de Liberação de Medicamentos , Gases/administração & dosagem , Pulmão/metabolismo , Nebulizadores e Vaporizadores , Administração por Inalação , Adulto , Aerossóis , Meios de Contraste/administração & dosagem , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Óxido Nítrico/administração & dosagem , Oxigênio/administração & dosagem
7.
3D Print Addit Manuf ; 2(4): 196-203, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27917393

RESUMO

Specific ventilation imaging (SVI) is a noninvasive magnetic resonance imaging (MRI)-based method for determining the regional distribution of inspired air in the lungs, useful for the assessment of pulmonary function in medical research. This technique works by monitoring the rate of magnetic resonance signal change in response to a series of imposed step changes in inspired oxygen concentration. The current SVI technique requires a complex system of tubes, valves, and electronics that are used to supply and rapidly switch inspired gases while subjects are imaged, which makes the technique difficult to translate into the clinical setting. This report discusses the design and implementation of custom three-dimensional (3D) printed hardware that greatly simplifies SVI measurement of lung function. Several hardware prototypes were modeled using computer-aided design software and printed for evaluation. After finalization of the design, the new delivery system was evaluated based on O2 and N2 concentration step responses and validated against the current SVI protocol. The design performed rapid switching of supplied gas within 250 ms and consistently supplied the desired concentration of O2 during operation. It features a reduction in the number of commercial hardware components, from five to one, and a reduction in the number of gas lines between the operator's room and the scanner room, from four to one, as well as a substantially reduced preparation time from 25 to 5 min. 3D printing is well suited to the design of inexpensive custom MRI compatible hardware, making it particularly useful in imaging-based research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...