Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38937077

RESUMO

Even partly consolidated memories can be forgotten given sufficient time, but the brain activity associated with durability of episodic memory at different time scales remains unclear. Here, we aimed to identify brain activity associated with retrieval of partly consolidated episodic memories that continued to be remembered in the future. Forty-nine younger (20 to 38 years; 25 females) and 43 older adults (60 to 80 years, 25 females) were scanned with functional magnetic resonance imaging during associative memory retrieval 12 h post-encoding. Twelve hours is sufficient to allow short-term synaptic consolidation as well as early post-encoding replay to initiate memory consolidation. Successful memory trials were classified into durable and transient source memories based on responses from a memory test ~6 d post-encoding. Results demonstrated that successful retrieval of future durable vs. transient memories was supported by increased activity in a medial prefrontal and ventral parietal area. Individual differences in activation as well as the subjective vividness of memories during encoding were positively related to individual differences in memory performance after 6 d. The results point to a unique and novel aspect of brain activity supporting long-term memory, in that activity during retrieval of memories even after 12 h of consolidation contains information about potential for long-term durability.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Consolidação da Memória , Memória Episódica , Rememoração Mental , Humanos , Feminino , Masculino , Adulto , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem , Rememoração Mental/fisiologia , Idoso , Consolidação da Memória/fisiologia , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Fatores de Tempo
2.
Psychol Med ; : 1-11, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563302

RESUMO

BACKGROUND: Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS: Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS: No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS: While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.

3.
BMJ Open ; 14(3): e081635, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458785

RESUMO

INTRODUCTION: Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS: DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION: Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Marcadores de Spin , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Estudos Observacionais como Assunto
4.
Clin Nutr ; 43(1): 176-186, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061271

RESUMO

BACKGROUND: Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important structural components of neural cellular membranes and possess anti-inflammatory properties. Very preterm infants are deprived of the enhanced placental supply of these fatty acids, but the benefit of postnatal supplementation on brain development is uncertain. The aim of this study was to test the hypothesis that early enteral supplementation with ARA and DHA in preterm infants improves white matter (WM) microstructure assessed by diffusion-weighted MRI at term equivalent age. METHODS: In this double-blind, randomized controlled trial, infants born before 29 weeks gestational age were allocated to either 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) or medium chain triglycerides (control). Supplements were started on the second day of life and provided until 36 weeks postmenstrual age. The primary outcome was brain maturation assessed by diffusion tensor imaging (DTI) using Tract-Based Spatial Statistics (TBSS) analysis. RESULTS: We included 120 infants (60 per group) in the trial; mean (range) gestational age was 26+3 (22+6 - 28+6) weeks and postmenstrual age at scan was 41+3 (39+1 - 47+0) weeks. Ninety-two infants underwent MRI imaging, and of these, 90 had successful T1/T2 weighted MR images and 74 had DTI data of acceptable quality. TBSS did not show significant differences in mean or axial diffusivity between the groups, but demonstrated significantly higher fractional anisotropy in several large WM tracts in the ARA:DHA group, including corpus callosum, the anterior and posterior limb of the internal capsula, inferior occipitofrontal fasciculus, uncinate fasciculus, and the inferior longitudinal fasciculus. Radial diffusivity was also significantly lower in several of the same WM tracts in the ARA:DHA group. CONCLUSION: This study suggests that supplementation with ARA and DHA at doses matching estimated fetal accretion rates improves WM maturation compared to control treatment, but further studies are needed to ascertain any functional benefit. CLINICAL TRIAL REGISTRATION: www. CLINICALTRIALS: gov; ID:NCT03555019.


Assuntos
Recém-Nascido Prematuro , Substância Branca , Gravidez , Lactente , Recém-Nascido , Humanos , Feminino , Ácidos Docosa-Hexaenoicos , Imagem de Tensor de Difusão/métodos , Placenta , Substância Branca/diagnóstico por imagem , Suplementos Nutricionais , Ácido Araquidônico , Encéfalo/diagnóstico por imagem
5.
Cancers (Basel) ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37760629

RESUMO

Anti-VEGF (vascular endothelial growth factor) treatment improves response rates, but not progression-free or overall survival in advanced breast cancer. It has been suggested that subgroups of patients may benefit from this treatment; however, the effects of adding anti-VEGF treatment to a standard chemotherapy regimen in breast cancer patients are not well studied. Understanding the effects of the anti-vascular treatment on tumor vasculature may provide a selection of patients that can benefit. The aim of this study was to study the vascular effect of bevacizumab using clinical dynamic contrast-enhanced MRI (DCE-MRI). A total of 70 women were randomized to receive either chemotherapy alone or chemotherapy with bevacizumab for 25 weeks. DCE-MRI was performed at baseline and at 12 and 25 weeks, and in addition 25 of 70 patients agreed to participate in an early MRI after one week. Voxel-wise pharmacokinetic analysis was performed using semi-quantitative methods and the extended Tofts model. Vascular architecture was assessed by calculating the fractal dimension of the contrast-enhanced images. Changes during treatment were compared with baseline and between the treatment groups. There was no significant difference in tumor volume at any point; however, DCE-MRI parameters revealed differences in vascular function and vessel architecture. Adding bevacizumab to chemotherapy led to a pronounced reduction in vascular DCE-MRI parameters, indicating decreased vascularity. At 12 and 25 weeks, the difference between the treatment groups is severely reduced.

7.
Cereb Cortex ; 33(8): 4844-4858, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36190442

RESUMO

Systems consolidation of new experiences into lasting episodic memories involves hippocampal-neocortical interactions. Evidence of this process is already observed during early post-encoding rest periods, both as increased hippocampal coupling with task-relevant perceptual regions and reactivation of stimulus-specific patterns following intensive encoding tasks. We investigate the spatial and temporal characteristics of these hippocampally anchored post-encoding neocortical modulations. Eighty-nine adults participated in an experiment consisting of interleaved memory task- and resting-state periods. We observed increased post-encoding functional connectivity between hippocampus and individually localized neocortical regions responsive to stimuli encountered during memory encoding. Post-encoding modulations were manifested as a nearly system-wide upregulation in hippocampal coupling with all major functional networks. The configuration of these extensive modulations resembled hippocampal-neocortical interaction patterns estimated from active encoding operations, suggesting hippocampal post-encoding involvement exceeds perceptual aspects. Reinstatement of encoding patterns was not observed in resting-state scans collected 12 h later, nor when using other candidate seed regions. The similarity in hippocampal functional coupling between online memory encoding and offline post-encoding rest suggests reactivation in humans involves a spectrum of cognitive processes engaged during the experience of an event. There were no age effects, suggesting that upregulation of hippocampal-neocortical connectivity represents a general phenomenon seen across the adult lifespan.


Assuntos
Consolidação da Memória , Memória Episódica , Neocórtex , Adulto , Humanos , Neocórtex/fisiologia , Regulação para Cima , Imageamento por Ressonância Magnética , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia
8.
Transl Psychiatry ; 12(1): 161, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422097

RESUMO

Cortical microstructure is influenced by circadian rhythm and sleep deprivation, yet the precise underpinnings of these effects remain unclear. The ratio between T1-weighted and T2-weighted magnetic resonance images (T1w/T2w ratio) has been linked to myelin levels and dendrite density and may offer novel insight into the intracortical microstructure of the sleep deprived brain. Here, we examined intracortical T1w/T2w ratio in 41 healthy young adults (26 women) before and after 32 h of either sleep deprivation (n = 18) or a normal sleep-wake cycle (n = 23). Linear models revealed significant group differences in T1w/T2w ratio change after 32 h in four clusters, including bilateral effects in the insular, cingulate, and superior temporal cortices, comprising regions involved in attentional, auditory and pain processing. Across clusters, the sleep deprived group showed an increased T1w/T2w ratio, while the normal sleep-wake group exhibited a reduced ratio. These changes were not explained by in-scanner head movement, and 95% of the effects across clusters remained significant after adjusting for cortical thickness and hydration. Compared with a normal sleep-wake cycle, 32 h of sleep deprivation yields intracortical T1w/T2w ratio increases. While the intracortical changes detected by this study could reflect alterations in myelin or dendritic density, or both, histological analyses are needed to clarify the precise underlying cortical processes.


Assuntos
Imageamento por Ressonância Magnética , Privação do Sono , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Bainha de Mielina/patologia , Privação do Sono/diagnóstico por imagem , Adulto Jovem
9.
Int J Cardiol Heart Vasc ; 38: 100935, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005213

RESUMO

BACKGROUND: Persistent dyspnea is a common symptom after pulmonary embolism (PE). However, the pathophysiology of persistent dyspnea is not fully clarified. This study aimed to explore possible associations between diffuse myocardial fibrosis, as assessed by cardiac magnetic resonance (CMR) T1 mapping, and persistent dyspnea in patients with a history of PE. METHODS: CMR with T1 mapping and extracellular volume fraction (ECV) calculations were performed after PE in 51 patients with persistent dyspnea and in 50 non-dyspneic patients. Patients with known pulmonary disease, heart disease and CTEPH were excluded. RESULTS: Native T1 was higher in the interventricular septum in dyspneic patients compared to non-dyspneic patients; difference 13 ms (95% CI: 2-23 ms). ECV was also significantly higher in patients with dyspnea; difference 0.9 percent points (95% CI: 0.04-1.8 pp). There was no difference in native T1 or ECV in the left ventricular lateral wall. Native T1 in the interventricular septum had an adjusted Odds Ratio of 1.18 per 10 ms increase (95% CI: 0.99-1.42) in predicting dyspnea, and an adjusted Odds Ratio of 1.47 per 10 ms increase (95% CI: 1.10-1.96) in predicting Incremental Shuttle Walk Test (ISWT) score < 1020 m. CONCLUSION: Septal native T1 and ECV values were higher in patients with dyspnea after PE compared with those who were fully recovered suggesting a possible pathological role of myocardial fibrosis in the development of dyspnea after PE. Further studies are needed to validate our findings and to explore their pathophysiological role and clinical significance.

10.
Cereb Cortex ; 32(11): 2358-2372, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34581398

RESUMO

Encoding of durable episodic memories requires cross-talk between the hippocampus and multiple brain regions. Changes in these hippocampal interactions could contribute to age-related declines in the ability to form memories that can be retrieved after extended time intervals. Here we tested whether hippocampal-neocortical- and subcortical functional connectivity (FC) observed during encoding of durable episodic memories differed between younger and older adults. About 48 younger (20-38 years; 25 females) and 43 older (60-80 years; 25 females) adults were scanned with fMRI while performing an associative memory encoding task. Source memory was tested ~20 min and ~6 days postencoding. Associations recalled after 20 min but later forgotten were classified as transient, whereas memories retained after long delays were classified as durable. Results demonstrated that older adults showed a reduced ability to form durable memories and reduced hippocampal-caudate FC during encoding of durable memories. There was also a positive relationship between hippocampal-caudate FC and higher memory performance among the older adults. No reliable age group differences in durable memory-encoding activity or hippocampal-neocortical connectivity were observed. These results support the classic theory of striatal alterations as one cause of cognitive decline in aging and highlight that age-related changes in episodic memory extend beyond hippocampal-neocortical connections.


Assuntos
Memória Episódica , Idoso , Mapeamento Encefálico , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rememoração Mental
11.
Neuroimage ; 245: 118709, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848300

RESUMO

BACKGROUND: The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. METHODS: We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. RESULTS: Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. CONCLUSIONS: In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies.


Assuntos
Conectoma , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
12.
Pediatr Radiol ; 51(1): 66-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33033916

RESUMO

BACKGROUND: Children with Fontan circulation are at risk of developing hepatic fibrosis/cirrhosis. Reliable noninvasive monitoring techniques are lacking or under development. OBJECTIVE: To investigate surrogate indicators of hepatic fibrosis in adolescents with Fontan circulation by evaluating hepatic magnetic resonance (MR) T1 mapping and extracellular volume fraction measurements compared to US shear-wave elastography. MATERIALS AND METHODS: We analyzed hepatic native T1 times and extracellular volume fractions with modified Look-Locker inversion recovery. Liver stiffness was analyzed with shear-wave elastography. We compared results between 45 pediatric patients ages 16.7±0.6 years with Fontan circulation and 15 healthy controls ages 19.2±1.2 years. Measurements were correlated to clinical and hemodynamic data from cardiac catheterization. RESULTS: MR mapping was successful in 35/45 patients, revealing higher hepatic T1 times (774±44 ms) than in controls (632±52 ms; P<0.001) and higher extracellular volume fractions (47.4±5.0%) than in controls (34.6±3.8%; P<0.001). Liver stiffness was 1.91±0.13 m/s in patients vs. 1.20±0.10 m/s in controls (P<0.001). Native T1 times correlated with central venous pressures (r=0.5, P=0.007). Native T1 was not correlated with elastography in patients (r=0.2, P=0.1) or controls (r = -0.3, P=0.3). Extracellular volume fraction was correlated with elastography in patients (r=0.5, P=0.005) but not in controls (r=0.2, P=0.6). CONCLUSION: Increased hepatic MR relaxometry and shear-wave elastography values in adolescents with Fontan circulation suggested the presence of hepatic fibrosis or congestion. Central venous pressure was related to T1 times. Changes were detected differently with MR relaxometry and elastography; thus, these techniques should not be used interchangeably in monitoring hepatic fibrosis.


Assuntos
Técnicas de Imagem por Elasticidade , Técnica de Fontan , Hepatopatias , Adolescente , Adulto , Criança , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Hepatopatias/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Adulto Jovem
13.
Neuroimage ; 226: 117540, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186715

RESUMO

Sleep deprivation influences several critical functions, yet how it affects human brain white matter (WM) is not well understood. The aim of the present work was to investigate the effect of 32 hours of sleep deprivation on WM microstructure compared to changes observed in a normal sleep-wake cycle (SWC). To this end, we utilised diffusion weighted imaging (DWI) including the diffusion tensor model, diffusion kurtosis imaging and the spherical mean technique, a novel biophysical diffusion model. 46 healthy adults (23 sleep deprived vs 23 with normal SWC) underwent DWI across four time points (morning, evening, next day morning and next day afternoon, after a total of 32 hours). Linear mixed models revealed significant group × time interaction effects, indicating that sleep deprivation and normal SWC differentially affect WM microstructure. Voxel-wise comparisons showed that these effects spanned large, bilateral WM regions. These findings provide important insight into how sleep deprivation affects the human brain.


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Privação do Sono/patologia , Substância Branca/patologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Sono/fisiologia , Privação do Sono/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
14.
Phys Med Biol ; 65(22): 225020, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33200748

RESUMO

Dynamic susceptibility contrast (DSC) imaging is a widely used technique for assessment of cerebral blood volume (CBV). With combined gradient-echo and spin-echo DSC techniques, measures of the underlying vessel size and vessel architecture can be obtained from the vessel size index (VSI) and vortex area, respectively. However, how noise, and specifically the contrast-to-noise ratio (CNR), affect the estimations of these parameters has largely been overlooked. In order to address this issue, we have performed simulations to generate DSC signals with varying levels of CNR, defined by the peak of relaxation rate curve divided by the standard deviation of the baseline. Moreover, DSC data from 59 brain cancer patients were acquired at two different 3 T-scanners (N = 29 and N = 30, respectively), where CNR and relative parameter maps were obtained. Our simulations showed that the measured parameters were affected by CNR in different ways, where low CNR led to overestimations of CBV and underestimations of VSI and vortex area. In addition, a higher noise-sensitivity was found in vortex area than in CBV and VSI. Results from clinical data were consistent with simulations, and indicated that CNR < 4 gives highly unreliable measurements. Moreover, we have shown that the distribution of values in the tumour regions could change considerably when voxels with CNR below a given cut off are excluded when generating the relative parameter maps. The widespread use of CBV and attractive potential of VSI and vortex area, makes the noise-sensitivity of these parameters found in our study relevant for further use and development of the DSC imaging technique. Our results suggest that the CNR has considerable impact on the measured parameters, with the potential to affect the clinical interpretation of DSC-MRI, and should therefore be taken into account in the clinical decision-making process.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Adulto , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Eur J Radiol ; 132: 109289, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002815

RESUMO

PURPOSE: We studied the ability of Restriction Spectrum Imaging (RSI), a novel advanced diffusion imaging technique, to estimate levels of cellularity in different glioblastoma regions, evaluated their prognostic value compared with established clinical diffusion metrics such as fractional anisotropy (FA) and mean diffusivity (MD). METHODS: Forty-two patients with untreated glioblastoma, IDH-wildtype, were examined with an advanced MRI tumor protocol. The region of interest (ROI) was obtained from the contrast-enhancing part of tumor and the peritumoral brain zones and then co-registered with RSI-cellularity index, FA and MD maps. Histogram parameters of diffusion metrics were assessed for all ROI locations and compared to MGMT promoter methylation status and survival. The ability of RSI-cellularity index, FA, and MD to stratify survival and were assessed by Cox proportional hazard regression, adjusted for significant clinical predictors. RESULTS: The highest RSI-cellularity index was measured in contrast-enhancing tumor core with a negative gradient from tumor core to the periphery of peritumoral zone with predictive accuracy 81 % (P < 0.001). Shorter overall survival was significant associated with higher RSI-cellularity index (hazard ratio (HR) 3.6, 95 % confidence interval (CI) 1.3-9.5, P = 0.002) with synchronal decrease in MD (HR 0.31, 95 %CI 0.1-0.8, P = 0.008) in the contrast-enhanced tumor core. This association was also consistent for RSI-cellularity index value measured in the peri-enhancing zone (HR 3.6, 95 % CI 1.0-12.3, P = 0.041). No statistically significant differences were noted between RSI-cellularity index, FA, nor MD and MGMT promoter methylation. CONCLUSION: RSI-cellularity index may be used as prognostic biomarker to improve risk stratification in patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Humanos , Intervalo Livre de Progressão
16.
Eur J Radiol ; 132: 109278, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33010685

RESUMO

PURPOSE: Relative cerebral blood volume (rCBV) from dynamic susceptibility contrast (DSC)-MRI is a valuable biomarker in patients with glioblastoma for assessing treatment response and predicting overall survival. DSC-MRI based on echo planar images (EPI) may possess severe geometric distortions from magnetic field inhomogeneities up to the order of centimeters. The aim of this study is to assess how much two readily available EPI-based geometric distortion correction methods, FSL TOPUP and EPIC, affect rCBV values from DSC-MRI in patients with confirmed glioblastoma. METHOD: We used a combined single-shot 2D gradient-echo (T2*), spin-echo (T2) EPI sequence to estimate both T2* and T2-weighted rCBV from the same contrast agent injection. Effects of distortion correction on the positive phase-encoded T2- and T2*-images were assessed in healthy anatomical brain regions in terms of Wilcoxon signed rank tests on median rCBV change and on Dice coefficients, as well as in tumor lesions in terms of Wilcoxon signed rank tests on median rCBV change. RESULTS: Our results show that following distortion correction, both gradient-echo and spin-echo rCBV increased in cortical areas of the frontal, temporal and occipital lobe, including the posterior orbital gyri in the frontal lobe and middle frontal gyri (p < 0.0008). Similar, improved Dice coefficients were observed for gradient-echo EPI in temporal, occipital and frontal lobe. Only spin-echo rCBV in enhancing lesion increased with correction (p = 0.0002). CONCLUSION: Our study sheds light on the importance of performing geometric distortion correction on EPI-based MRI data before assessing functional information such as rCBV values. Our findings may indicate that uncorrected rCBV values can be underestimated from positive phase-encoding EPI and that geometric distortion correction is warranted when comparing EPI-based data to conventional MRI.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Volume Sanguíneo Cerebral , Meios de Contraste , Imagem Ecoplanar , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
17.
Neurooncol Adv ; 2(1): vdaa028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642687

RESUMO

BACKGROUND: MRI may provide insights into longitudinal responses in the diffusivity and vascular function of the irradiated normal-appearing brain following stereotactic radiosurgery (SRS) of brain metastases. METHODS: Forty patients with brain metastases from non-small cell lung cancer (N = 26) and malignant melanoma (N = 14) received SRS (15-25 Gy). Longitudinal MRI was performed pre-SRS and at 3, 6, 9, 12, and 18 months post-SRS. Measures of tissue diffusivity and vascularity were assessed by diffusion-weighted and perfusion MRI, respectively. All maps were normalized to white matter receiving less than 1 Gy. Longitudinal responses were assessed in normal-appearing brain, excluding tumor and edema, in the LowDose (1-10 Gy) and HighDose (>10 Gy) regions. The Eastern Cooperative Oncology Group (ECOG) performance status was recorded pre-SRS. RESULTS: Following SRS, the diffusivity in the LowDose region increased continuously for 1 year (105.1% ± 6.2%; P < .001), before reversing toward pre-SRS levels at 18 months. Transient reductions in microvascular cerebral blood volume (P < .05), blood flow (P < .05), and vessel densities (P < .05) were observed in LowDose at 6-9 months post-SRS. Correspondingly, vessel calibers in LowDose transiently increased at 3-9 months (P < .01). The responses in HighDose displayed similar trends as in LowDose, but with larger interpatient variations. Vascular responses followed pre-SRS ECOG status. CONCLUSIONS: Our results imply that even low doses of radiation to normal-appearing brain following cerebral SRS induce increased diffusivity and reduced vascular function for up until 18 months. In particular, the vascular responses indicate the reduced ability of the normal-appearing brain tissue to form new capillaries. Assessing the potential long-term neurologic effects of SRS on the normal-appearing brain is warranted.

18.
Neuroimage ; 212: 116682, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114147

RESUMO

Recently, several magnetic resonance imaging (MRI) studies have reported time-of-day effects on brain structure and function. Due to the possibility that time-of-day effects reflect mechanisms of circadian regulation, the aim of this prospective study was to assess these effects while under strict experimental control of variables that might influence biological clocks, such as caffeine intake and exposure to blue-emitting light. In addition, the current study assessed whether time-of-day effects were driven by changes to extracellular space, by including estimations of non-Gaussian diffusion metrics obtained from diffusion kurtosis imaging, white matter tract integrity and the spherical mean technique, in addition to conventional diffusion tensor imaging -derived parameters. Participants were 47 healthy adults who underwent diffusion-weighted imaging in the morning and evening of the same day. Morning and evening scans were compared using voxel-wise tract based spatial statistics and permutation testing. A day of wakefulness was associated with widespread increases in fractional anisotropy, indices of kurtosis and indices of the axonal water fraction. In addition, wakefulness was associated with widespread decreases in radial diffusivity, both in the single compartment and in extra-axonal space. These results suggest that an increase in the intra-axonal space relative to the extra-axonal volume underlies time-of-day effects in human white matter, which is in line with activity-induced reductions to the extracellular volume. These findings provide important insight into possible mechanisms driving time-of-day effects in MRI.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética/métodos , Espaço Extracelular , Vigília , Substância Branca , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo
19.
Cancer Res ; 79(16): 4293-4304, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31118201

RESUMO

The usefulness of mechanistic models to disentangle complex multiscale cancer processes, such as treatment response, has been widely acknowledged. However, a major barrier for multiscale models to predict treatment outcomes in individual patients lies in their initialization and parametrization, which needs to reflect individual cancer characteristics accurately. In this study, we use multitype measurements acquired routinely on a single breast tumor, including histopathology, MRI, and molecular profiling, to personalize parts of a complex multiscale model of breast cancer treated with chemotherapeutic and antiangiogenic agents. The model accounts for drug pharmacokinetics and pharmacodynamics. We developed an open-source computer program that simulates cross-sections of tumors under 12-week therapy regimens and used it to individually reproduce and elucidate treatment outcomes of 4 patients. Two of the tumors did not respond to therapy, and model simulations were used to suggest alternative regimens with improved outcomes dependent on the tumor's individual characteristics. It was determined that more frequent and lower doses of chemotherapy reduce tumor burden in a low proliferative tumor while lower doses of antiangiogenic agents improve drug penetration in a poorly perfused tumor. Furthermore, using this model, we were able to correctly predict the outcome in another patient after 12 weeks of treatment. In summary, our model bridges multitype clinical data to shed light on individual treatment outcomes. SIGNIFICANCE: Mathematical modeling is used to validate possible mechanisms of tumor growth, resistance, and treatment outcome.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Medicina de Precisão/métodos , Adulto , Bevacizumab/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Simulação por Computador , Feminino , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Resultado do Tratamento
20.
AJR Am J Roentgenol ; 212(6): 1206-1214, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30888866

RESUMO

OBJECTIVE. The objective of our study was to investigate whether phosphatase and tensin homolog (PTEN) expression is associated with clinicopathologic features and multiparametric MRI findings in prostate cancer. MATERIALS AND METHODS. Forty-three patients with prostate cancer who underwent radical prostatectomy were included. Index tumor was identified on pretreatment MRI and delineated in the area that correlated best with histopathology results. The apparent diffusion coefficient (ADC) from DWI and pharmacokinetic parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) using the extended Tofts model (Ktrans, kep, ve, and vp) within the tumor were estimated. The following clinicopathologic parameters were assessed: pretreatment serum levels of prostate-specific antigen, disseminated tumor cell status, age, Gleason score, tumor size, extraprostatic extension (EPE), tumor location, and lymph node metastases. Gene expression profiles were acquired in biopsies from the tumor using bead arrays, and validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR) on a different part of the biopsy. RESULTS. Based on bead arrays (p = 0.006) and RT-qPCR (p = 0.03) data, a significantly lower ADC was found in tumors with low PTEN expression. Moreover, PTEN expression was negatively associated with lymph node metastases (bead arrays, p = 0.008; RT-qPCR, p < 0.001). A weak but significant association between PTEN expression, EPE (p = 0.048), and Gleason score (p = 0.028) was revealed on bead arrays. ADC was negatively correlated with Gleason score (p = 0.001) and tumor size (p = 0.023). No association among DCE parameters, PTEN expression, and clinicopathologic features was found. CONCLUSION. ADC derived from DWI may be useful in selecting patients with potentially aggressive tumor caused by PTEN deficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...