Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 77, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720799

RESUMO

Despite ethanol's penetration into urban transportation, observational evidence quantifying the consequence for the atmospheric particulate burden during actual, not hypothetical, fuel-fleet shifts, has been lacking. Here we analyze aerosol, meteorological, traffic, and consumer behavior data and find, empirically, that ambient number concentrations of 7-100-nm diameter particles rise by one-third during the morning commute when higher ethanol prices induce 2 million drivers in the real-world megacity of São Paulo to substitute to gasoline use (95% confidence intervals: +4,154 to +13,272 cm-3). Similarly, concentrations fall when consumers return to ethanol. Changes in larger particle concentrations, including US-regulated PM2.5, are statistically indistinguishable from zero. The prospect of increased biofuel use and mounting evidence on ultrafines' health effects make our result acutely policy relevant, to be weighed against possible ozone increases. The finding motivates further studies in real-world environments. We innovate in using econometrics to quantify a key source of urban ultrafine particles.The biofuel ethanol has been introduced into urban transportation in many countries. Here, by measuring aerosols in São Paulo, the authors find that high ethanol prices coincided with an increase in harmful nanoparticles by a third, as drivers switched from ethanol to cheaper gasoline, showing a benefit of ethanol.


Assuntos
Atmosfera , Etanol/química , Gasolina/análise , Tamanho da Partícula , Material Particulado/química , Poluentes Atmosféricos/análise , Poluição do Ar , Brasil , Cidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA