Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 399: 109981, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783350

RESUMO

BACKGROUND: Adeno-associated viral vectors (AAVs) are a widely used gene transfer platform in neuroscience. Although naturally AAV serotypes can have preferences for certain tissues, selectivity for particular cell types in the CNS does not exist. Towards interneuron targeting, capsid engineering of AAV2 including display of the designed ankyrin repeat protein (DARPin) 2K19 specific for the glutamate receptor subunit 4 (GluA4) at the N-terminus of the VP2 capsid protein has been established. The resulting AAV-VP2N is highly specific for interneurons, but exhibits rather moderate transduction efficiencies. METHODS: Two alternative insertion sites for 2K19 in the GH2/GH3 loop of capsid proteins VP1 (AAV-VP1L) or VP2 (AAV-VP2L) were exploited to yield second generation GluA4-AAVs. Having packaged reporter genes under ubiquitous promoters, the vectors were characterized for biochemical properties as well as gene delivery into cell lines and rat hippocampal slice cultures. Electrophysiological recordings monitored the functional properties of transduced cells. RESULTS: Compared to AAV-VP2N, the second-generation vectors, especially AAV-VP1L, achieved about 2-fold higher genomic titers as well as a substantially improved GluA4 binding. Improvements in gene transfer activities were 18-fold on GluA4-overexpressing A549 cells and five-fold on rat hippocampal organotypic slice cultures reaching approximately 60 % of all parvalbumin positive interneurons upon a single administration. The spiking behaviour of transduced cells was unaltered and characteristic for a heterogeneous group of interneurons. CONCLUSION: The substantially improved gene transfer activity of the second generation GluA4-targeted AAV combined with low toxicity makes this vector an attractive tool for interneuron-directed gene transfer with unrestricted promotor and transgene choice.


Assuntos
Dependovirus , Vetores Genéticos , Ratos , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Linhagem Celular , Terapia Genética/métodos , Transdução Genética
2.
Redox Biol ; 38: 101798, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285412

RESUMO

Maintaining high frequency firing of narrow action potentials puts a large metabolic load on fast spiking (FS), perisomatic-inhibitory interneurons compared to their slow-spiking, dendrite targeting counterparts. Although the relationship of action potential (AP) firing and metabolism is firmly established, there is no single method to differentiate interneurons in situ based on their firing properties. In this study, we explore a novel strategy to easily identify the metabolically active FS cells among different classes of interneurons. We found that the oxidation of the fluorescent free radical marker 2,7-dichlorodihydrofluorescein (H2DCF) preferentially occurs in interneurons both in slice cultures and acute brain slices. Despite their morphological heterogeneity, almost all DCF-positive (DCF+) neurons belonged to the cluster of non-accommodating FS interneurons. Furthermore, all FS interneurons expressing parvalbumin (PV) both in slice cultures and in acute slices from tdTomato-PVCre transgenic mice were also DCF+. However, only half of the recorded DCF + cells were also PV+, indicating that H2DCF-oxidation occurs in different interneuron classes characterized by non-accomodating AP-firing. Comprehensively enhancing spontaneous neuronal activity led to mitochondrial oxidation of DCF in pyramidal cells as well as interneurons, suggesting that the apparent selectivity towards interneurons represents differences in the underlying metabolic load. While radical-scavenging, inhibition of APs or NO-synthesis, and iron chelation had no effect on the staining pattern, exposure to the complex-I inhibitor, rotenone, prevented interneuronal DCF accumulation. We conclude that H2DCF oxidation is independent of free radicals but correlates with the intensive oxidative energy metabolism and high mitochondrial mass in interneurons sharing the non-accommodating FS phenotype.


Assuntos
Interneurônios , Parvalbuminas , Potenciais de Ação , Animais , Camundongos , Camundongos Transgênicos , Células Piramidais
3.
Pflugers Arch ; 443(3): 491-501, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11810221

RESUMO

The use of advanced patch-clamp recording techniques in brain slices, such as simultaneous recording from multiple neurons and recording from dendrites or presynaptic terminals, demands slices of the highest quality. In this context the mechanics of the tissue slicer are an important factor. Ideally, a tissue slicer should generate large-amplitude and high-frequency movements of the cutting blade in a horizontal axis, with minimal vibrations in the vertical axis. We developed a vibroslicer that fulfils these in part conflicting requirements. The oscillator is a permanent-magnet-coil-leaf-spring system. Using an auto-resonant mechano-electrical feedback circuit, large horizontal oscillations (up to 3 mm peak-to-peak) with high frequency ( approximately 90 Hz) are generated. To minimize vertical vibrations, an adjustment mechanism was employed that allowed alignment of the cutting edge of the blade with the major axis of the oscillation. A vibroprobe device was used to monitor vertical vibrations during adjustment. The system is based on the shading of the light path between a light-emitting diode (LED) and a photodiode. Vibroprobe monitoring revealed that the vibroslicer, after appropriate adjustment, generated vertical vibrations of <1 microm, significantly less than many commercial tissue slicers. Light- and electron-microscopic analysis of surface layers of slices cut with the vibroslicer showed that cellular elements, dendritic processes and presynaptic terminals are well preserved under these conditions, as required for patch-clamp recording from these structures.


Assuntos
Microtomia/instrumentação , Fibras Musgosas Hipocampais/fisiologia , Técnicas de Cultura de Órgãos/instrumentação , Técnicas de Patch-Clamp/métodos , Animais , Dendritos/fisiologia , Microscopia Eletrônica , Fibras Musgosas Hipocampais/ultraestrutura , Terminações Pré-Sinápticas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...