Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 12(3): 493-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26425831

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are major drivers of risk at many urban and/or industrialized sediment sites. The US Environmental Protection Agency (USEPA) currently recommends using measurements of 18 parent + 16 groups of alkylated PAHs (PAH-34) to assess the potential for sediment-bound PAHs to impact benthic organisms at these sites. ASTM Method D7363-13 was developed to directly measure low-level sediment porewater PAH concentrations. These concentrations are then compared to ambient water criteria (final chronic values [FCVs]) to assess the potential for impact to benthic organisms. The interlaboratory validation study that was used to finalize ASTM D7363-13 was developed using 24 of the 2-, 3-, and 4-ring PAHs (PAH-24) that are included in the USEPA PAH-34 analyte list. However, it is the responsibility of the user of ASTM Method D7363 to establish a test method to quantify the remaining 10 higher molecular weight PAHs that make up PAH-34. These higher molecular weight PAHs exhibit extremely low saturation solubilities that make their detection difficult in porewater, which has proven difficult to implement in a contract laboratory setting. As a result, commercial laboratories are hesitant to conduct the method on the entire PAH-34 analyte list. This article presents a statistical comparison of the ability of the PAH-24 and PAH-34 porewater results to predict survival of the freshwater amphipod Hyalella azteca, using the original 269 sediment samples used to gain ASTM D7363 Method approval. The statistical analysis shows that the PAH-24 are statistically indistinguishable from the PAH-34 for predicting toxicity. These results indicate that the analysis of freely dissolved porewater PAH-24 is sufficient for making risk-based decisions based on benthic invertebrate toxicity (survival and growth). This reduced target analyte list should result in a cost-saving for stakeholders and broader implementation of the method at PAH-impacted sediment sites. Integr Environ Assess Manag 2016;12:493-499. © 2015 SETAC.


Assuntos
Anfípodes/fisiologia , Monitoramento Ambiental/normas , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Sedimentos Geológicos , Testes de Toxicidade/normas , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...