Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(6): 320, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727849

RESUMO

The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Biossensoriais/métodos , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Nanoestruturas/química , Colorimetria/métodos , Análise Espectral Raman/métodos
2.
bioRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38659833

RESUMO

Defining the binding epitopes of antibodies is essential for understanding how they bind to their antigens and perform their molecular functions. However, while determining linear epitopes of monoclonal antibodies can be accomplished utilizing well-established empirical procedures, these approaches are generally labor- and time-intensive and costly. To take advantage of the recent advances in protein structure prediction algorithms available to the scientific community, we developed a calculation pipeline based on the localColabFold implementation of AlphaFold2 that can predict linear antibody epitopes by predicting the structure of the complex between antibody heavy and light chains and target peptide sequences derived from antigens. We found that this AlphaFold2 pipeline, which we call PAbFold, was able to accurately flag known epitope sequences for several well-known antibody targets (HA / Myc) when the target sequence was broken into small overlapping linear peptides and antibody complementarity determining regions (CDRs) were grafted onto several different antibody framework regions in the single-chain antibody fragment (scFv) format. To determine if this pipeline was able to identify the epitope of a novel antibody with no structural information publicly available, we determined the epitope of a novel anti-SARS-CoV-2 nucleocapsid targeted antibody using our method and then experimentally validated our computational results using peptide competition ELISA assays. These results indicate that the AlphaFold2-based PAbFold pipeline we developed is capable of accurately identifying linear antibody epitopes in a short time using just antibody and target protein sequences. This emergent capability of the method is sensitive to methodological details such as peptide length, AlphaFold2 neural network versions, and multiple-sequence alignment database. PAbFold is available at https://github.com/jbderoo/PAbFold.

3.
Anal Chem ; 96(10): 4111-4119, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38417100

RESUMO

Multiplexed analysis in medical diagnostics is widely accepted as a more thorough and complete method compared to single-analyte detection. While analytical methods like polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) exist for multiplexed detection of biomarkers, they remain time-consuming and expensive. Lateral flow assays (LFAs) are an attractive option for point-of-care testing, and examples of multiplexed LFAs exist. However, these devices are limited by spatial resolution of test lines, large sample volume requirements, cross-reactivity, and poor sensitivity. Recent work has developed capillary-flow microfluidic ELISA platforms as a more sensitive alternative to LFAs; however, multiplexed detection on these types of devices has yet to be demonstrated. In the aftermath of the initial SARS-CoV-2 pandemic, the need for rapid, sensitive point-of-care devices has become ever clearer. Moving forward, devices that can distinguish between diseases with similar presenting symptoms would be the ideal home diagnostic. Here, the first example of a multiplexed capillary-flow immunoassay device for the simultaneous detection of multiple biomarkers is reported. From a single sample addition step, the reagents and washing steps required for two simultaneous ELISAs are delivered to spatially separated test strips. Visual results can be obtained in <15 min, and images captured with a smartphone can be analyzed for quantitative data. This device was used to distinguish between and quantify H1N1 hemagglutinin (HA) and SARS-CoV-2 nucleocapsid protein (N-protein). Using this device, analytical detection limits of 840 and 133 pg/mL were obtained for hemagglutinin and nucleocapsid protein, respectively. The presence of one target in the device did not increase the signal on the other test line, indicating no cross-reactivity between the assays. Additionally, simultaneous detection of both N-protein and HA was performed as well as simultaneous detection of N-protein and human C-reactive protein (CRP). Elevated levels of CRP in a patient infected with SARS-CoV-2 have been shown to correlate with more severe outcomes and a greater risk of death as well. To further expand on the simultaneous detection of two biomarkers, CRP and N-protein were detected simultaneously, and the presence of SARS-CoV-2 N-protein did not interfere with the detection of CRP when both targets were present in the sample.


Assuntos
Hemaglutininas , Vírus da Influenza A Subtipo H1N1 , Humanos , Imunoensaio/métodos , SARS-CoV-2 , Proteína C-Reativa/análise , Biomarcadores/análise , Proteínas do Nucleocapsídeo
4.
Virology ; 592: 109986, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290414

RESUMO

The large amount of viral RNA produced during infections has the potential to interact with and effectively sequester cellular RNA binding proteins, thereby influencing aspects of post-transcriptional gene regulation in the infected cell. Here we demonstrate that the abundant 5' leader RNA region of SARS-CoV-2 viral RNAs can interact with the cellular polypyrimidine tract binding protein (PTBP1). Interestingly, the effect of a knockdown of PTBP1 protein on cellular gene expression is also mimicked during SARS-CoV-2 infection, suggesting that this protein may be functionally sequestered by viral RNAs. Consistent with this model, the alternative splicing of mRNAs that is normally controlled by PTBP1 is dysregulated during SARS-CoV-2 infection. Collectively, these data suggest that the SARS-CoV-2 leader RNA sequesters the cellular PTBP1 protein during infection, resulting in significant impacts on the RNA biology of the host cell. These alterations in post-transcriptional gene regulation may play a role in SARS-CoV-2 mediated molecular pathogenesis.


Assuntos
COVID-19 , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , SARS-CoV-2 , Humanos , Processamento Alternativo , COVID-19/metabolismo , COVID-19/virologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , SARS-CoV-2/fisiologia
5.
Anal Chim Acta ; 1277: 341634, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604607

RESUMO

Over the last few years, the SARS-CoV-2 pandemic has made the need for rapid, affordable diagnostics more compelling than ever. While traditional laboratory diagnostics like PCR and well-plate ELISA are sensitive and specific, they can be costly and take hours to complete. Diagnostic tests that can be used at the point-of-care or at home, like lateral flow assays (LFAs) are a simple, rapid alternative, but many commercially available LFAs have been criticized for their lack of sensitivity compared to laboratory methods like well-plate ELISAs. The Capillary-Driven Immunoassay (CaDI) device described in this work uses microfluidic channels and capillary action to passively automate the steps of a traditional well-plate ELISA for visual read out. This work builds on prior capillary-flow devices by further simplifying operation and use of colorimetric detection. Upon adding sample, an enzyme-conjugated secondary antibody, wash steps, and substrate are sequentially delivered to test and control lines on a nitrocellulose strip generating a colorimetric response. The end user can visually detect SARS-CoV-2 antigen in 15-20 min by naked eye, or results can be quantified using a smartphone and software such as ImageJ. An analytical detection limit of 83 PFU/mL for SARS-CoV-2 was determined for virus in buffer, and 222 PFU/mL for virus spiked into nasal swabs using image analysis, similar to the LODs determined by traditional well-plate ELISA. Additionally, a visual detection limit of 100 PFU/mL was determined in contrived nasal swab samples by polling 20 untrained end-users. While the CaDI device was used for detecting clinically relevant levels of SARS-CoV-2 in this study, the CaDI device can be easily adapted to other immunoassay applications by changing the reagents and antibodies.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Imunoensaio , Ensaio de Imunoadsorção Enzimática , Anticorpos , Teste para COVID-19
6.
Viruses ; 15(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515107

RESUMO

As obligate intracellular parasites, viruses rely heavily on host cells for replication, and therefore dysregulate several cellular processes for their benefit. In return, host cells activate multiple signaling pathways to limit viral replication and eradicate viruses. The present study explores the complex interplay between viruses and host cells through next generation RNA sequencing as well as mass spectrometry (SILAC). Both the coding transcriptome and the proteome of human brain-derived U87 cells infected with Kunjin virus, Zika virus, or Yellow Fever virus were compared to the transcriptome and the proteome of mock-infected cells. Changes in the abundance of several hundred mRNAs and proteins were found in each infection. Moreover, the alternative splicing of hundreds of mRNAs was found to be modulated upon viral infection. Interestingly, a significant disconnect between the changes in the transcriptome and those in the proteome of infected cells was observed. These findings provide a global view of the coding transcriptome and the proteome of Flavivirus-infected cells, leading to a better comprehension of Flavivirus-host interactions.


Assuntos
Flavivirus , Vírus do Nilo Ocidental , Febre Amarela , Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Zika virus/metabolismo , Vírus do Nilo Ocidental/genética , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/metabolismo , Proteoma/genética , Transcriptoma , Flavivirus/genética , Replicação Viral , Encéfalo/metabolismo
7.
Viruses ; 15(7)2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37515256

RESUMO

Herpes simplex virus 2 (HSV-2) causes most sexually transmitted genital ulcerative disease. No effective prophylactic vaccine is currently available. Replication-defective (ICP8-) HSV stimulates immune responses in animals without producing progeny virus, making it potentially useful as a safe form of a live vaccine against HSV. We previously demonstrated that mice generate a stronger response to ICP8- virus encoding B7-2 costimulation molecules than to the parental replication-defective virus. We have also demonstrated enhanced immunogenicity of an ICP8-, virion host shutoff (vhs)- virus which can no longer destabilize viral and host mRNAs. Here, we constructed a triple mutant, ICP8-vhs-B7-2+ strain, and compared it to both double mutant viruses. Immunization of mice with a single dose of ICP8-B7-2+ or ICP8-vhs-B7-2+ virus decreased challenge virus replication in the vaginal mucosa, genital disease, and mortality more effectively than immunization with the ICP8-vhs- virus. Immunization with ICP8-B7-2+ or ICP8-vhs-B7-2+ virus also effectively suppressed subsequent HSV-2 infection of the nervous system compared to immunization with the ICP8-vhs- virus. ICP8-B7-2+ and ICP8-vhs-B7-2+ strains induced more IFN gamma-producing CD8 T cells and memory CD8 T cells than did ICP8-vhs- virus, potentially explaining the enhanced protective effects. Thus, B7 costimulation molecules expressed from a replication-defective vaccine can enhance vaccine efficacy, even in an immunocompetent host.


Assuntos
Herpes Simples , Herpesvirus Humano 2 , Feminino , Camundongos , Animais , Herpesvirus Humano 2/fisiologia , Antígenos B7 , Proteínas Virais , Replicação Viral , Vacinas Atenuadas , Vírion
8.
Curr Res Biotechnol ; 5: 100132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275459

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has infected millions of individuals and continues to be a major health concern worldwide. While reverse transcription-polymerase chain reaction remains a reliable method for detecting infections, limitations of this technology, particularly cost and the requirement of a dedicated laboratory, prevent rapid viral monitoring. Antigen tests filled this need to some extent but with limitations including sensitivity and specificity, particularly against emerging variants of concern. Here, we developed aptamers against the SARS-CoV-2 Nucleocapsid protein to complement or replace antibodies in antigen detection assays. As detection reagents in ELISA-like assays, our DNA aptamers were able to detect as low as 150 pg/mL of the protein and under 150 k copies of inactivated SARS-CoV-2 Wuhan Alpha strain in viral transport medium with little cross-reactivity to other human coronaviruses (HCoVs). Further, our aptamers were reselected against the SARS-CoV-2 Omicron variant of concern, and we found two sequences that had a more than two-fold increase in signal compared to our original aptamers when used as detection reagents against protein from the Omicron strain. These findings illustrate the use of aptamers as promising alternative detection reagents that may translate for use in current tests and our findings validate the method for the reselection of aptamers against emerging viral strains.

9.
Anal Methods ; 15(22): 2721-2728, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37099406

RESUMO

A capillary-driven microfluidic sequential flow device, designed for eventual at-home or doctor's office use, was developed to perform an enzyme-linked immunosorbent assay (ELISA) for serology assays. Serology assays that detect SARS-CoV-2 antibodies can be used to determine prior infection, immunity status, and/or individual vaccination status and are typically run using well-plate ELISAs in centralized laboratories, but in this format SARs-CoV-2 serology tests are too expensive and/or slow for most situations. Instead, a point-of-need device that can be used at home or in doctor's offices for COVID-19 serology testing would provide critical information for managing infections and determining immune status. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a microfluidic sequential flow device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA through sequential delivery of reagents to the detection area using only capillary flow. The device utilizes a network of microfluidic channels made of transparency film and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label and colorimetric substrate produce an amplified, visible signal for increased sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device detected antibodies at 2.8 ng mL-1 from whole blood, while a well-plate ELISA using the same capture and detection antibodies could detect 1.2 ng mL-1. The performance of the capillary-driven immunoassay (CaDI) system developed here was confirmed by demonstrating SARS-CoV-2 antibody detection, and we believe that the device represents a fundamental step forward in equipment-free point-of-care technology.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Microfluídica , Reprodutibilidade dos Testes , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antivirais
10.
ACS Meas Sci Au ; 2(6): 584-594, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36570470

RESUMO

The COVID-19 pandemic focused attention on a pressing need for fast, accurate, and low-cost diagnostic tests. This work presents an electrochemical capillary driven immunoassay (eCaDI) developed to detect SARS-CoV-2 nucleocapsid (N) protein. The low-cost flow device is made of polyethylene terephthalate (PET) and adhesive films. Upon addition of a sample, reagents and washes are sequentially delivered to an integrated screen-printed carbon electrode for detection, thus automating a full sandwich immunoassay with a single end-user step. The modified electrodes are sensitive and selective for SARS-CoV-2 N protein and stable for over 7 weeks. The eCaDI was tested with influenza A and Sindbis virus and proved to be selective. The eCaDI was also successfully applied to detect nine different SARS-CoV-2 variants, including Omicron.

11.
Anal Chem ; 94(21): 7545-7550, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35588209

RESUMO

Urinary tract infections (UTIs) are one of the most common infections across the world and can lead to serious complications such as sepsis if not treated in a timely manner. Uropathogenic Escherichia coli account for 75% of all UTIs. Early diagnosis is crucial to help control UTIs, but current culturing methods are expensive and time-consuming and lack sensitivity. The existing point-of-care methods fall short because they rely on indirect detection from elevated nitrates in urine rather than detecting the actual bacteria causing the infection. Magnetophoresis is a powerful method used to separate and/or isolate cells of interest from complex matrices for analysis. However, magnetophoresis typically requires complex and expensive instrumentation to control flow in microfluidic devices. Coupling magnetophoresis with microfluidic paper-based analytical devices (µPADs) enables pump-free flow control and simple and low-cost operation. Early magnetophoresis µPADs showed detection limits competitive with traditional methods but higher than targets for clinical use. Here, we demonstrate magnetophoresis using hybrid µPADs that rely on capillary action in hydrophilic polyethylene terephthalate channels combined with paper pumps. We were able to detect E. coli with a calculated limit of detection of 2.40 × 102 colony-forming units per mL.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Humanos , Dispositivos Lab-On-A-Chip , Sistemas Automatizados de Assistência Junto ao Leito , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia
12.
Anal Chem ; 94(11): 4712-4719, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35263100

RESUMO

Point-of-care (POC) methods currently available for detecting SARS-CoV-2 infections still lack accuracy. Here, we report the development of a highly sensitive electrochemical immunoassay capable of quantitatively detecting the presence of the SARS-CoV-2 virus in patient nasopharyngeal samples using stencil-printed carbon electrodes (SPCEs) functionalized with capture antibodies targeting the SARS-CoV-2 nucleocapsid protein (N protein). Samples are added to the electrode surface, followed by horseradish peroxidase (HRP)-conjugated detection antibodies also targeting the SARS-CoV-2 N protein. The concentration of the virus in samples is quantified using chronoamperometry in the presence of 3,3'5,5'-tetramethylbenzidine. Limits of detection equivalent to less than 50 plaque forming units/mL (PFU/mL) were determined with virus sample volumes of 20 µL. No cross-reactivity was detected with the influenza virus and other coronavirus N proteins. Patient nasopharyngeal samples were tested as part of a proof-of-concept clinical study where samples were also tested using the gold-standard real-time quantitative polymerase chain reaction (RT-qPCR) method. Preliminary results from a data set of 22 samples demonstrated a clinical specificity of 100% (n = 9 negative samples according to RT-qPCR) and a clinical sensitivity of 70% for samples with RT-PCR cycle threshold (Ct) values under 30 (n = 10) and 100% for samples with Ct values under 25 (n = 5), which complies with the World Health Organization (WHO) criteria for POC COVID-19 diagnostic tests. Our functionalized SPCEs were also validated against standard plaque assays, and very good agreement was found between both methods (R2 = 0.9993, n = 6), suggesting that our assay could be used to assess patient infectivity. The assay currently takes 70 min from sampling to results.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Imunoensaio/métodos , Proteínas do Nucleocapsídeo , Sensibilidade e Especificidade
13.
Wiley Interdiscip Rev RNA ; 13(2): e1688, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34472205

RESUMO

Flaviviruses are a major health concern because over half of the world population is at risk of infection and there are very few antiviral therapeutics to treat diseases resulting from infection. Replication is an essential part of the flavivirus survival. One of the viral proteins, NS3 helicase, is critical for unwinding the double stranded RNA intermediate during flaviviral replication. The helicase performs the unwinding of the viral RNA intermediate structure in an ATP-dependent manner. NS3 helicase is a member of the Viral/DEAH-like subfamily of the superfamily 2 helicase containing eight highly conserved structural motifs (I, Ia, II, III, IV, IVa, V, and VI) localized between the ATP-binding and RNA-binding pockets. Of these structural motifs only three are well characterized for function in flaviviruses (I, II, and VI). The roles of the other structural motifs are not well understood for NS3 helicase function, but comparison of NS3 with other superfamily 2 helicases within the viral/DEAH-like, DEAH/RHA, and DEAD-box subfamilies can be used to elucidate the roles of these structural motifs in the flavivirus NS3 helicase. This review aims to summarize the role of each conserved structural motif within flavivirus NS3 in RNA helicase function. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.


Assuntos
Flavivirus , RNA Helicases , Trifosfato de Adenosina/metabolismo , Flavivirus/genética , RNA Helicases/química , RNA Helicases/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
14.
ACS Sens ; 6(11): 4067-4075, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34694794

RESUMO

Rapid and inexpensive serological tests for SARS-CoV-2 antibodies are needed to conduct population-level seroprevalence surveillance studies and can improve diagnostic reliability when used in combination with viral tests. Here, we report a novel low-cost electrochemical capillary-flow device to quantify IgG antibodies targeting SARS-CoV-2 nucleocapsid proteins (anti-N antibody) down to 5 ng/mL in low-volume (10 µL) human whole blood samples in under 20 min. No sample preparation is needed as the device integrates a blood-filtration membrane for on-board plasma extraction. The device is made of stacked layers of a hydrophilic polyester and double-sided adhesive films, which create a passive microfluidic circuit that automates the steps of an enzyme-linked immunosorbent assay (ELISA). The sample and reagents are sequentially delivered to a nitrocellulose membrane that is modified with a recombinant SARS-CoV-2 nucleocapsid protein. When present in the sample, anti-N antibodies are captured on the nitrocellulose membrane and detected via chronoamperometry performed on a screen-printed carbon electrode. As a result of this quantitative electrochemical readout, no result interpretation is required, making the device ideal for point-of-care (POC) use by non-trained users. Moreover, we show that the device can be coupled to a near-field communication potentiostat operated from a smartphone, confirming its true POC potential. The novelty of this work resides in the integration of sensitive electrochemical detection with capillary-flow immunoassay, providing accuracy at the point of care. This novel electrochemical capillary-flow device has the potential to aid the diagnosis of infectious diseases at the point of care.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Imunoensaio , Proteínas do Nucleocapsídeo , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Estudos Soroepidemiológicos
15.
Micromachines (Basel) ; 12(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34577709

RESUMO

Microfluidics offer many advantages to Point of Care (POC) devices through lower reagent use and smaller size. Additionally, POC devices offer the unique potential to conduct tests outside of the laboratory. In particular, Electro-wetting on Dielectric (EWOD) microfluidics has been shown to be an effective way to move and mix liquids enabling many PoC devices. However, much of the research surrounding these microfluidic systems are focused on a single aspect of the system capability, such as droplet control or a specific new application at the device level using the EWOD technology. Often in these experiments the supporting systems required for operation are bench top equipment such as function generators, power supplies, and personal computers. Although various aspects of how an EWOD device is capable of moving and mixing droplets have been demonstrated at various levels, a complete self-contained and portable lab-on-a-chip system based on the EWOD technology has not been well demonstrated. For instance, EWOD systems tend to use high voltage alternating current (AC) signals to actuate electrodes, but little consideration is given to circuitry size or power consumption of such components to make the entire system portable. This paper demonstrates the feasibility of integrating all supporting hardware and software to correctly operate an EWOD device in a completely self-contained and battery-powered handheld unit. We present results that demonstrate a complete sample preparation flow for deoxyribonucleic acid (DNA) extraction and isolation. The device was designed to be a field deployable, hand-held platform capable of performing many other sample preparation tasks automatically. Liquids are transported using EWOD and controlled via a programmable microprocessor. The programmable nature of the device allows it to be configured for a variety of tests for different applications. Many considerations were given towards power consumption, size, and system complexity which make it ideal for use in a mobile environment. The results presented in this paper show a promising step forward to the portable capability of microfluidic devices based on the EWOD technology.

16.
Analyst ; 146(13): 4340-4347, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34106115

RESUMO

Sensitive, reliable and cost-effective detection of pathogens has wide ranging applications in clinical diagnostics and therapeutics, water and food safety, environmental monitoring, biosafety and epidemiology. Nucleic acid amplification tests (NAATs) such as PCR and isothermal amplification methods provide excellent analytical performance and significantly faster turnaround times than conventional culture-based methods. However, the inherent cost and complexity of NAATs limit their application in resource-limited settings and the developing world. To help address this urgent need, we have developed a sensitive method for nucleic acid analysis based on padlock probe rolling circle amplification (PLRCA), nuclease protection (NP) and lateral flow detection (LFA), referred to as PLAN-LFA, that can be used in resource-limited settings. The assay involves solution-phase hybridization of a padlock probe to target, sequence-specific ligation of the probe to form a circular template that undergoes isothermal rolling circle amplification in the presence of a polymerase and a labeled probe DNA. The RCA product is a long, linear concatenated single-stranded DNA that contains binding sites for the labeled probe. The sample is then exposed to a nuclease which selectively cleaves single-stranded DNA, the double-stranded labeled probe is protected from nuclease digestion and detected in a lateral flow immunoassay format to provide a visual, colorimetric readout of results. We have developed specific assays targeting beta-lactamase resistance gene for monitoring of antimicrobial resistance and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2, the novel coronavirus discovered in 2019) using the PLAN-LFA platform. The assay provides a limit of detection of 1.1 pM target DNA (or 1.3 × 106 copies per reaction). We also demonstrate the versatility and robustness of the method by performing analysis on DNA and RNA targets, and perform analysis in complex sample matrices like saliva, plant tissue extract and bacterial culture without any sample pretreatment steps.


Assuntos
COVID-19 , SARS-CoV-2 , Sondas de DNA , Humanos , Técnicas de Amplificação de Ácido Nucleico , Hibridização de Ácido Nucleico
17.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010360

RESUMO

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Peromyscus/virologia , Doenças dos Roedores/transmissão , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Modelos Animais de Doenças , Reservatórios de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
18.
Virology ; 558: 28-37, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33714753

RESUMO

To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is critical for viral replication, integral to viral particle assembly, and a major diagnostic marker for infection and immune protection. Currently the limited available antibody reagents targeting the nucleocapsid protein are not specific to SARS-CoV-2 nucleocapsid protein, and sequences for these antibodies are not publicly available. In this work we developed and characterized a series of new mouse monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein, with a specific clone, mBG86, targeting only SARS-CoV-2 nucleocapsid protein. The monoclonal antibodies were validated in ELISA, Western blot, and immunofluorescence analyses. The variable regions from six select clones were cloned and sequenced, and preliminary epitope mapping of the sequenced clones was performed. Overall, these new antibody reagents will be of significant value in the fight against COVID-19.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , COVID-19/epidemiologia , Clonagem Molecular , Escherichia coli , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/imunologia , Proteínas Recombinantes/imunologia
19.
Analyst ; 146(6): 1932-1939, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33492316

RESUMO

Capillary-driven microfluidic devices are of significant interest for on-site analysis because they do not require external pumps and can be made from inexpensive materials. Among capillary-driven devices, those made from paper and polyester film are among the most common and have been used in a wide array of applications. However, since capillary forces are the only driving force, flow is difficult to control, and passive flow control methods such as changing the geometry must be used to accomplish various analytical applications. This study presents several new flow control methods that can be utilized in a laminate capillary-driven microfluidic device to increase available functionality. First, we introduce push and burst valve systems that can stop and start flow. These valves can stop flow for >30 min and be opened by either pressing the channel or inflowing other fluids to the valve region. Next, we propose flow control methods for Y-shaped channels that enable more functions. In one example, we demonstrate the ability to accurately control concentration to create laminar, gradient, and fully mixed flows. In a second example, flow velocity in the main channel is controlled by adjusting the length of the inlet channel. In addition, the flow velocity is constant as the inlet length increases. Finally, the flow velocity in the Y-shaped device as a function of channel height and fluid properties such as viscosity and surface tension was examined. As in previous studies on capillary-driven channels, the flow rate was affected by each parameter. The fluidic control tools presented here will enable new designs and functions for low cost point of need assays across a variety of fields.

20.
Anal Methods ; 12(43): 5177-5185, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33073789

RESUMO

Microfluidic magnetophoresis is a powerful technique that is used to separate and/or isolate cells of interest from complex matrices for analysis. However, mechanical pumps are required to drive flow, limiting portability and making translation to point-of-care (POC) settings difficult. Microfluidic paper-based analytical devices (µPADs) offer an alternative to traditional microfluidic devices that do not require external pumps to generate flow. However, µPADs are not typically used for particle analysis because most particles become trapped in the porous fiber network. Here we report the ability of newly developed fast-flow microfluidic paper-based analytical devices (ffPADs) to perform magnetophoresis. ffPADs use capillary action in a gap between stacked layers of paper and transparency sheets to drive flow at higher velocities than traditional µPADs. The multi-layer ffPADs allow particles and cells to move through the gap without being trapped in the paper layers. We first demonstrate that ffPADs enable magnetic particle separations in a µPAD with a neodymium permanent magnet and study key factors that affect performance. To demonstrate utility, E. coli was used as a model analyte and was isolated from human urine before detection with a fluorescently labeled antibody. A capture efficiency of 61.5% was then obtained of E. coli labeled magnetic beads in human urine. Future studies will look at the improvement of the capture efficiency and to make this assay completely off-chip without the need of a fluorescent label. The assay and device described here demonstrate the first example of magnetophoresis in a paper based, pump free microfluidic device.


Assuntos
Técnicas Analíticas Microfluídicas , Papel , Ação Capilar , Escherichia coli , Humanos , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...