Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717662

RESUMO

OBJECTIVE: Evaluation of Nepeta cataria as a host with specific endogenous metabolite background for transient expression and metabolic engineering of secondary biosynthetic sequences. RESULTS: The reporter gene gfp::licBM3 as well as three biosynthetic genes leading to the formation of the cannabinoid precursor olivetolic acid were adopted to the modular cloning standard GoldenBraid, transiently expressed in two chemotypes of N. cataria and compared to Nicotiana benthamiana. To estimate the expression efficiency in both hosts, quantification of the reporter activity was carried out with a sensitive and specific lichenase assay. While N. benthamiana exhibited lichenase activity of 676 ± 94 µmol g-1 s-1, N. cataria cultivar '1000', and the cultivar 'Citriodora' showed an activity of 37 ± 8 µmol g-1 s-1 and 18 ± 4 µmol g-1 s-1, respectively. Further, combinatorial expression of genes involved in cannabinoid biosynthetic pathway acyl-activating enzyme 1 (aae1), olivetol synthase (ols) and olivetolic acid cyclase (oac) in N. cataria cv. resulted presumably in the in vivo production of olivetolic acid glycosides. CONCLUSION: Nepeta cataria is amenable to Agrobacterium-mediated transient expression and could serve as a novel chassis for the engineering of secondary metabolic pathways and transient evaluation of heterologous genes.

2.
Biotechnol Lett ; 40(6): 981-987, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29619743

RESUMO

OBJECTIVE: Through heterologous expression of the tetrahydrocannabinolic acid synthase (THCAS) coding sequence from Cannabis sativa L. in Nicotiana benthamiana, we evaluated a transient plant-based expression system for the production of enzymes involved in cannabinoid biosynthesis. RESULTS: Thcas was modularized according to the GoldenBraid grammar and its expression tested upon alternative subcellular localization of the encoded catalyst with and without fusion to a fluorescent protein. THCAS was detected only when ER targeting was used; cytosolic and plastidal localization resulted in no detectable protein. Moreover, THCAS seems to be glycosylated in N. benthamiana, suggesting that this modification might have an influence on the stability of the protein. Activity assays with cannabigerolic acid as a substrate showed that the recombinant enzyme produced not only THCA (123 ± 12 fkat g FW-1 activity towards THCA production) but also cannabichromenic acid (CBCA; 31 ± 2.6 fkat g FW-1 activity towards CBCA production). CONCLUSION: Nicotiana benthamiana is a suitable host for the generation of cannabinoid producing enzymes. To attain whole pathway integration, careful analysis of subcellular localization is necessary.


Assuntos
Canabinoides/metabolismo , Espaço Intracelular/enzimologia , Oxirredutases Intramoleculares , Engenharia Metabólica/métodos , Nicotiana/enzimologia , Proteínas de Plantas , Cannabis/enzimologia , Cannabis/genética , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
3.
Planta ; 243(3): 813-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26715562

RESUMO

MAIN CONCLUSION: Based on findings described herein, we contend that the reduction of vomilenine en route to antiarrhythmic ajmaline in planta might proceed via an alternative, novel sequence of biosynthetic steps. In the genus Rauvolfia, monoterpenoid indole alkaloids (MIAs) are formed via complex biosynthetic sequences. Despite the wealth of information about the biochemistry and molecular genetics underlying these processes, many reaction steps involving oxygenases and oxidoreductases are still elusive. Here, we describe molecular cloning and characterization of three cinnamyl alcohol dehydrogenase (CAD)-like reductases from Rauvolfia serpentina cell culture and R. tetraphylla roots. Functional analysis of the recombinant proteins, with a set of MIAs as potential substrates, led to identification of one of the enzymes as a CAD, putatively involved in lignin formation. The two remaining reductases comprise isoenzymes derived from orthologous genes of the investigated alternative Rauvolfia species. Their catalytic activity consists of specific conversion of vomilenine to 19,20-dihydrovomilenine, thus proving their exclusive involvement in MIA biosynthesis. The obtained data suggest the existence of a previously unknown bypass in the biosynthetic route to ajmaline further expanding structural diversity within the MIA family of specialized plant metabolites.


Assuntos
Oxirredutases do Álcool/metabolismo , Oxirredutases/metabolismo , Rauwolfia/enzimologia , Alcaloides de Triptamina e Secologanina/metabolismo , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Alcaloides Indólicos/metabolismo , Oxirredutases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Rauwolfia/genética , Proteínas Recombinantes , Alcaloides de Triptamina e Secologanina/química , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...