Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3908, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400438

RESUMO

Recent studies indicate that mantle plumes, which transfer material and heat from the earth's interior to its surface, represent multifaceted upwellings. The Tristan-Gough hotspot track (South Atlantic), which formed above a mantle plume, documents spatial geochemical zonation in two distinct sub-tracks since ~70 Ma. The origin and the sudden appearance of two distinct geochemical flavors is enigmatic, but could provide insights into the structural evolution of mantle plumes. Sr-Nd-Pb-Hf isotope data from the Late Cretaceous Rio Grande Rise and adjacent Jean Charcot Seamount Chain (South American Plate), which represent the counterpart of the older Tristan-Gough volcanic track (African Plate), extends the bilateral-zonation to ~100 Ma. Our results support recent numerical models, demonstrating that mantle plumes can split into distinct upper mantle conduits, and provide evidence that these plumelets formed at the plume head-to-plume tail transition. We attribute the plume zonation to sampling the geochemically-graded margin of the African Large Low-Shear-Velocity Province.

2.
Sci Rep ; 11(1): 10796, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031468

RESUMO

Plate kinematic models propose that India and Sri Lanka (INDSRI) separated from Antarctica by extremely slow seafloor spreading that started in early Cretaceous times, and that a long-distance ridge jump left a continental fragment stranded off the Antarctic margin under the Southern Kerguelen Plateau 1-3. Here, we present newly acquired magnetic and deep wide-angle seismic data that require a fundamental re-evaluation of these concepts. The new data clearly define the onset of oceanic crust in the Enderby Basin and off southern Sri Lanka, and date its formation with unprecedented confidence. The revised timing indicates that India and Sri Lanka detached from Antarctica earlier in the east than in the west. Furthermore, no compelling evidence for an extinct spreading axis is found in the Enderby Basin. A refined plate motion model indicates that India and Sri Lanka departed from Antarctica without major rift jumps, but by the action of three spreading ridges with different timings and velocities that must have been accommodated by significant intracontinental deformation.

3.
Nat Commun ; 11(1): 4543, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917891

RESUMO

Tristan da Cunha is assumed to be the youngest subaerial expression of the Walvis Ridge hot spot. Based on new hydroacoustic data, we propose that the most recent hot spot volcanic activity occurs west of the island. We surveyed relatively young intraplate volcanic fields and scattered, probably monogenetic, submarine volcanoes with multibeam echosounders and sub-bottom profilers. Structural and zonal GIS analysis of bathymetric and backscatter results, based on habitat mapping algorithms to discriminate seafloor features, revealed numerous previously-unknown volcanic structures. South of Tristan da Cunha, we discovered two large seamounts. One of them, Isolde Seamount, is most likely the source of a 2004 submarine eruption known from a pumice stranding event and seismological analysis. An oceanic core complex, identified at the intersection of the Tristan da Cunha Transform and Fracture Zone System with the Mid-Atlantic Ridge, might indicate reduced magma supply and, therefore, weak plume-ridge interaction at present times.

4.
Nat Commun ; 9(1): 715, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459628

RESUMO

There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

6.
Sci Rep ; 6: 38529, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922097

RESUMO

Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates.

7.
J Acoust Soc Am ; 134(5): 3522-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24180763

RESUMO

Automated methods were developed to detect fin whale calls recorded by an array of ocean bottom seismometers (OBSs) deployed off the Portuguese coast between 2007 and 2008. Using recordings collected on a single day in January 2008, a standard seismological method for estimating earthquake location from single instruments, the three-component analysis, was used to estimate the relative azimuth, incidence angle, and horizontal range between each OBS and detected calls. A validation study using airgun shots, performed prior to the call analysis, indicated that the accuracy of the three-component analysis was satisfactory for this preliminary study. Point transect sampling using cue counts, a form of distance sampling, was then used to estimate the average probability of detecting a call via the array during the chosen day. This is a key step to estimating density or abundance of animals using passive acoustic data. The average probability of detection was estimated to be 0.313 (standard error: 0.033). However, fin whale density could not be estimated due to a lack of an appropriate estimate of cue (i.e., vocalization) rate. This study demonstrates the potential for using a sparse array of widely spaced, independently operating acoustic sensors, such as OBSs, for estimating cetacean density.


Assuntos
Acústica/instrumentação , Monitoramento Ambiental/instrumentação , Baleia Comum/classificação , Baleia Comum/fisiologia , Oceanografia/instrumentação , Transdutores de Pressão , Vocalização Animal/classificação , Animais , Oceano Atlântico , Monitoramento Ambiental/métodos , Desenho de Equipamento , Armas de Fogo , Oceanografia/métodos , Reconhecimento Automatizado de Padrão , Densidade Demográfica , Pressão , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie , Natação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...