Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6002, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019872

RESUMO

The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.


Assuntos
Acetato-CoA Ligase , Acetilcoenzima A , Bacillus subtilis , Proteínas de Bactérias , Lisina , Acetilação , Lisina/metabolismo , Acetilcoenzima A/metabolismo , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/química , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Monofosfato de Adenosina/metabolismo , Organofosfatos
2.
Chembiochem ; 25(13): e202400188, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38743506

RESUMO

Plastics, omnipresent in the environment, have become a global concern due to their durability and limited biodegradability, especially in the form of microparticles and nanoparticles. Polystyrene (PS), a key plastic type, is susceptible to fragmentation and surface alterations induced by environmental factors or industrial processes. With widespread human exposure through pollution and diverse industrial applications, understanding the physiological impact of PS, particularly in nanoparticle form (PS-NPs), is crucial. This study focuses on the interaction of PS-NPs with model blood proteins, emphasising the formation of a protein corona, and explores the subsequent contact with platelet membrane mimetics using experimental and theoretical approaches. The investigation involves αIIbß3-expressing cells and biomimetic membranes, enabling real-time and label-free nanoscale precision. By employing quartz-crystal microbalance with dissipation monitoring studies, the concentration-dependent cytotoxic effects of differently functionalised ~210 nm PS-NPs on HEK293 cells overexpressing αIIbß3 are evaluated in detail. The study unveils insights into the molecular details of PS-NP interaction with supported lipid bilayers, demonstrating that a protein corona formed in the presence of exemplary blood proteins offers protection against membrane damage, mitigating PS-NP cytotoxicity.


Assuntos
Nanopartículas , Poliestirenos , Coroa de Proteína , Humanos , Poliestirenos/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Células HEK293 , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química
3.
Macromol Biosci ; 23(8): e2200464, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36707930

RESUMO

Polystyrene is one of the most widely used plastics. This article reports on the interaction of 50 and 210 nm polystyrene nanoparticles (PSNPs) with human serum albumin (HSA) and transferrin (Tf), as well as their effect on supported lipid bilayers (SLBs), using experimental and theoretical approaches. Dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements show that the increase in diameter for the PSNP-protein bioconjugates depends on nanoparticle size and type of proteins. The circular dichroism (CD) spectroscopy results demonstrate that the proteins preserve their structures when they interact with PSNPs at physiological temperatures. The quartz crystal microbalance (QCM) technique reveals that PSNPs and their bioconjugates show no strong interactions with SLBs. On the contrary, the molecular dynamics simulations (MDS) show that both proteins bind strongly to the lipid bilayer (SLBs) when compared to their binding to a polystyrene surface model. The interaction is strongly dependent on the protein and lipid bilayer composition. Both the PSNPs and their bioconjugates show no toxicity in human umbilical vein endothelial (HUVEC) cells; however, bare 210 nm PSNPs and 50 nm PSNP-Tf bioconjugates show an increase in reactive oxygen species production. This study may be relevant for assessing the impact of plastics on health.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Bicamadas Lipídicas/química , Poliestirenos/química , Coroa de Proteína/química , Nanopartículas/química , Plásticos
4.
J Biomol Struct Dyn ; 41(17): 8201-8214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36271641

RESUMO

Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening disease. One hallmark is severe ADAMTS13 deficiency, causing ultra-large von Willebrand factor (VWF) multimers to accumulate, leading to microthrombi and lastly to microangiopathic hemolytic anemia and severe thrombocytopenia. Despite great success in recent decades, the molecular picture of the interaction between VWF and ADAMTS13 remains vague. Here, we utilized modern replica-exchange molecular dynamics simulations with the TIGER2h method to sample a vast configurational space of the isolated ADAMTS13-MDTCS domains and the exposure to its substrate and activating cofactor - the unraveled VWF-A2 domain. The sampling of binding sites and conformations was guided and filtered in agreement with available experimental evidence. We provide comprehensive information on exosites for each domain and direct pairs of interacting amino acids, for the first time. The major binding cluster for the active site of the MP domain contrasts the previous mapping of VWF-A2 residues and reciprocal binding pockets. Two major binding modes are revealed and provide access to conformational changes of an extended gatekeeper tetrad upon overcoming local latency during substrate binding and to a dedicated recruitment mechanism. Our work adds the first molecular interaction model that places previous experimental results in perspective to better understand disease-related mutations towards improved therapies. Numerous empirical targets are proposed to verify the given binding modes, to refine the overall picture of MP binding pockets, the role of Dis binding in MP activation and the passage of the Cys-rich domain through VWF-A2, thus deepening the understanding of a highly dynamic interplay.Communicated by Ramaswamy H. Sarma.

5.
J Chem Inf Model ; 62(17): 4200-4209, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36004729

RESUMO

Replica exchange molecular dynamics simulations are one of the most popular approaches to enhance conformational sampling of molecular systems. Applications range from protein folding to protein-protein or other host-guest interactions, as well as binding free energy calculations. While these methods are computationally expensive, highly accurate results can be obtained. We recently developed TIGER2hs, an improved version of the temperature intervals with global exchange of replicas (TIGER2) algorithm. This method combines the replica-based enhanced sampling in an explicit solvent with a hybrid solvent energy evaluation. During the exchange attempts, bulk water is replaced by an implicit solvent model, allowing sampling with significantly less replicas than parallel tempering (REMD). This enables accurate enhanced sampling calculations with only a fraction of computational resources compared to REMD. Our latest results highlight several issues with sampling imbalance and parameter sensitivity within the original TIGER2 exchange algorithms that affect the overall state populations. A high sensitivity on replica number and maximum temperature is eliminated by changing to a pairwise exchange kernel (PE) without additional sorting. Simulations are controlled by adjusting the average temperature change per exchange ⟨ΔT/χ⟩ to below 30 K to mimic a controlled temperature mixing of replicas similar to REMD. Thus, this parameter provides an applicable property for selecting combinations of replica number and maximum temperature to adjust simulations for best accuracy, with flexible resource investment. This increases the robustness of the method and ensures results in excellent agreement with REMD, as demonstrated for three different peptides.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Peptídeos/química , Dobramento de Proteína , Proteínas/química , Solventes/química , Temperatura
6.
J Inflamm Res ; 15: 3633-3642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775010

RESUMO

Objective: The pathophysiological mechanisms underlying chronic pancreatitis (CP) are still poorly understood. Human cationic (TRY1) and anionic (TRY2) trypsins are the two major trypsin isoforms and their activities are tightly regulated within pancreatic acinar cells. Typically, they exist in a molar ratio of 2:1 (cationic:anionic). This ratio is reversed during chronic alcohol abuse, pancreatic cancer, or pancreatitis due to selectively upregulated expression of TRY2, causing anionic trypsin to become the predominant isoform. The involvement of TRY2 in pancreatitis is considered limited due to the absence of disease-causing mutations and its increased prevalence for autoproteolysis. However, exacerbated pancreatitis in TRY2 overexpressing mice was recently demonstrated. Here, we aim to elucidate the molecular structure of human anionic trypsin and obtain insights into the autoproteolytic regulation of tryptic activity. Methods: Trypsin isoforms were recombinantly expressed in E. coli, purified and refolded. Enzymatic activities of all trypsin isoforms were determined and crystals of TRY2 were grown using the vapor-diffusion method. The structure was solved by molecular replacement and refined to a resolution of 1.7 Å. Equilibration molecular dynamics simulations were used to generate the corresponding TRY1-TRY1 model. Results: All trypsin isoforms display similar kinetic properties. The crystal structure of TRY2 reveals that the enzyme crystallized in the autoproteolytic state with Arg122 placed in the S1 binding pocket and the corresponding loop cleaved. The TRY2-TRY2 dimer confirms a previously hypothesized autoinhibitory state with an unexpectedly large binding interface. Conclusion: We provide a structure of TRY2, which is the predominant trypsin isoform in chronic pancreatitis and pancreatic cancer. A proposed autoinhibition mode was confirmed and the structural basis of the autoproteolytic failsafe mechanism elucidated.

7.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408828

RESUMO

(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1-TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor.


Assuntos
Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Escherichia coli , Predisposição Genética para Doença , Humanos , Mutação , Pancreatite Crônica/genética , Tripsina/genética , Inibidor da Tripsina Pancreática de Kazal/genética
8.
J Inflamm Res ; 14: 2111-2119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054303

RESUMO

PURPOSE: Although strongly related, the pathophysiological effect of the N34S mutation in the serine protease inhibitor Kazal type 1 (SPINK1) in chronic pancreatitis is still unknown. In this study, we investigate the conformational space of the human cationic trypsin-serine protease inhibitor complex. METHODS: Simulations with molecular dynamics, replica exchange, and transition pathway methods are used. RESULTS: Two main binding states of the inhibitor to the complex were found, which explicitly relate the influence of the mutation site to conformational changes in the active site of trypsin. CONCLUSION: Based on our result, a hypothesis is formulated that explains the development of chronic pancreatitis through accelerated digestion of the mutant by trypsin.

9.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807484

RESUMO

Transcription factors play a crucial role in regulating biological processes such as cell growth, differentiation, organ development and cellular signaling. Within this group, proteins equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown to be critically important for efficient regulation of the BCL11B target genes and could therefore represent a promising target for novel drug therapies. Here, we report the structural basis for BCL11B-BCL11B interaction mediated by the N-terminal ZF domain. By combining structure prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of the single ZF domain and directly involved in forming the dimer interface. These findings not only provide deep insight into how BCL11B acquires its active structure but also represent an important step towards rational design or selection of potential inhibitors.


Assuntos
Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Sequência de Aminoácidos/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
10.
J Chem Inf Model ; 59(10): 4383-4392, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31509400

RESUMO

As a key player in cell adhesion, the glycoprotein fibronectin is involved in the complex mechanobiology of the extracellular matrix. Although the function of many modules in the fibronectin molecule has already been understood, the structure and biological relevance of the C-terminal cross-linked region (CTXL) still remains unclear. It is known that fibronectin is only phosphorylated in the CTXL domain, but no results have been presented to date, which indicate a biological function based on this phosphorylation. For the first time, we introduce a structural model of the CTXL region in fibronectin, which we obtained by exhaustive replica exchange molecular dynamics simulations (TIGER2hs). The sampling revealed a conformational landscape of the dimerization module, and the global minimum state showed an umbrella-like module body and conspicuous structural region with two feet. We observed that the CTXL foot region exhibits a structural stability in its physiological state, which disappears upon changes in the phosphorylation state. Thus, our in silico studies enabled us to show that the flexibility of the CTXL region is guided by phosphorylation. These results indicate an in vivo function of the CTXL domain in protein binding and cell adhesion, which is controlled by phosphorylation.


Assuntos
Fibronectinas/química , Aminoácidos , Adesão Celular , Fibronectinas/fisiologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica
11.
J Phys Chem B ; 123(28): 5995-6006, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31265293

RESUMO

In many cases, native states of proteins may be predicted with sufficient accuracy by molecular dynamics simulations (MDSs) with modern force fields. Enhanced sampling methods based on MDS are applied for exploring the phase space of a protein sequence and to overcome barriers on rough conformational energy landscapes. The minimum free energy state is obtained with sampling algorithms providing sufficient convergence and accuracy. A reliable but computationally very expensive method is replica exchange molecular dynamics, with many modifications to this approach presented in the past. Recently, we demonstrated how our temperature intervals with global exchange of replicas hybrid (TIGER2h) solvent sampling algorithm made a good compromise between efficiency and accuracy. There, all states are sampled under full explicit solvent conditions with a freely chosen number of replicas, whereas an implicit solvent is used during the swap decisions. This hybrid method yielded a much better approximation to the agreement with calculations in an explicit solvent than fully implicit solvent simulations. Here, we present an extension of TIGER2h and add a few layers of explicit water molecules around the peptide for the energy calculations, whereas the dynamics in fully explicit water is maintained. We claim that these water layers better reproduce steric effects, the polarization of the solvent, and the resulting reaction field energy than typical implicit solvent models. By investigating the protein-solvent interactions across comprehensive thermodynamic state ensembles, we found a strong conformational dependence of this reaction field energy. All simulations were performed with nanoscale molecular dynamics on two peptides, the α-helical peptide (AAQAA)3 and the ß-hairpin peptide HP7. A production-ready TIGER2hs implementation is supplied, approaching the accuracy of full explicit solvent sampling at a fraction of computational resources.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Solventes/química , Sequência de Aminoácidos , Peptídeos/química , Conformação Proteica em alfa-Hélice , Temperatura
12.
PLoS One ; 14(4): e0214969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978226

RESUMO

Integrins are transmembrane proteins involved in hemostasis, wound healing, immunity and cancer. In response to intracellular signals and ligand binding, integrins adopt different conformations: the bent (resting) form; the intermediate extended form; and the ligand-occupied active form. An integrin undergoing such conformational dynamics is the heterodimeric platelet receptor αIIbß3. Although the dramatic rearrangement of the overall structure of αIIbß3 during the activation process is potentially related to changes in the protein secondary structure, this has not been investigated so far in a membrane environment. Here we examine the Mn2+- and drug-induced activation of αIIbß3 and the impact on the structure of this protein reconstituted into liposomes. By quartz crystal microbalance with dissipation monitoring and activation assays we show that Mn2+ induces binding of the conformation-specific antibody PAC-1, which only recognizes the extended, active integrin. Circular dichroism spectroscopy reveals, however, that Mn2+-treatment does not induce major secondary structural changes of αIIbß3. Similarly, we found that treatment with clinically relevant drugs (e.g. quinine) led to the activation of αIIbß3 without significant changes in protein secondary structure. Molecular dynamics simulation studies revealed minor local changes in the beta-sheet probability of several extracellular domains of the integrin. Our experimental setup represents a new approach to study transmembrane proteins, especially integrins, in a membrane environment and opens a new way for testing drug binding to integrins under clinically relevant conditions.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Quinina/química , Anticorpos/química , Dicroísmo Circular , Humanos , Lipossomos , Manganês/química , Manganês/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Técnicas de Microbalança de Cristal de Quartzo
13.
ChemMedChem ; 14(8): 853-864, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30811852

RESUMO

Indoles are privileged structures in medicinal and bioorganic chemistry that are particularly well suited to serve as platforms for diversity. Among many other therapeutic areas, the indole scaffold has been used to design aromatic compounds useful to interfere with enzymes engaged in the regulation of substrate acylation status, such as sirtuins. However, the planarity of the indole ring is not necessarily optimal for all target enzymes, especially when functionalization with aromatic side chains is required. Replacement of flat scaffolds by nonplanar molecular cores dominated by sp3 hybridization is a common strategy to avoid the disadvantages associated with poor solubility and high promiscuity, while covering less-well-explored areas of chemical space. Thus, we synthesized fragment-like tetrahydroindoles suitable for fragment-based drug discovery as well as a well-characterized small library intended as multipurpose screening compounds. For proof of principle, these compounds were screened against sirtuins 1-3, enzymes known to be addressable by indoles. We found that 2,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamides are potent and selective SIRT2 inhibitors. Compound 16 t displayed an IC50 value of 0.98 µm and could serve as exquisite starting point for hit-to-lead profiling.


Assuntos
Inibidores de Histona Desacetilases/química , Indóis/química , Sirtuína 2/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Indóis/síntese química , Indóis/metabolismo , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/metabolismo , Relação Estrutura-Atividade
14.
J Phys Chem B ; 122(29): 7295-7307, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29966412

RESUMO

The structure of a protein is often not completely accessible by experiments. In silico, replica exchange molecular dynamics (REMD) is the standard sampling method for predicting the secondary and tertiary structures from the amino acid sequence, but it is computationally very expensive. Two recent adaptations from REMD, temperature intervals with global exchange of replicas (TIGER2) and TIGER2A, have been tested here in implicit and explicit solvents. Additionally, explicit, implicit, and hybrid solvent REMD are compared. On the basis of the hybrid REMD (REMDh) method, we present a new hybrid TIGER2h algorithm for faster structural sampling, while retaining good accuracy. The implementations of REMDh, TIGER2, TIGER2A, and TIGER2h are provided for nanoscale molecular dynamics (NAMD). All the methods were tested with two model peptides of known structure, (AAQAA)3 and HP7, with helix and sheet motifs, respectively. The TIGER2 methods and REMDh were also applied to the unknown structure of the collagen type I telopeptides, which represent bigger proteins with some degree of disorder. We present simulations covering more than 180 µs and analyze the performance and convergence of the distributions of states between the particular methods by dihedral principal component and secondary structure analysis.


Assuntos
Colágeno Tipo I/química , Solventes/química , Algoritmos , Sequência de Aminoácidos , Colágeno Tipo I/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Análise de Componente Principal , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Estrutura Terciária de Proteína , Temperatura , Termodinâmica
15.
Proteins ; 85(6): 1119-1130, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263412

RESUMO

Synthetic scaffolds containing collagen (Type I) are of increasing interest for bone tissue engineering, especially for highly porous biomaterials in combination with glycosaminoglycans. In experiments the integration of heparin during the fibrillogenesis resulted in different types of collagen fibrils, but models for this aggregation on a molecular scale were only tentative. We conducted molecular dynamic simulations investigating the binding of heparin to collagen and the influence of the telopeptides during collagen aggregation. This aims at explaining experimental findings on a molecular level. Novel structures for N- and C-telopeptides were developed with the TIGER2 replica exchange algorithm and dihedral principle component analysis. We present an extended statistical analysis of the mainly electrostatic interaction between heparin and collagen and identify several binding sites. Finally, we propose a molecular mechanism for the influence of glycosaminoglycans on the morphology of collagen fibrils. Proteins 2017; 85:1119-1130. © 2017 Wiley Periodicals, Inc.


Assuntos
Colágeno Tipo I/química , Colágeno/química , Glicosaminoglicanos/química , Heparina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Osso e Ossos/química , Humanos , Impressão Molecular , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Eletricidade Estática , Termodinâmica , Engenharia Tecidual , Alicerces Teciduais
16.
Biomaterials ; 35(20): 5261-5277, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24703717

RESUMO

An effective amount of the antiseptic agent PHMB cannot simply be placed on the surface of titanium alloys where hydrocarbons were removed by different purification procedures. Pre-treatment of Ti6Al4V specimen with 5% H2O2 in 24 h results in extra introduced -OH and -COOH groups as well as an adsorbed water film on the surface, which provide the base for the subsequent formation of a relatively stable and multi-layered PHMB film. The superficially adhering PHMB film produces no adverse effects on MG63 cells within a 48 h-cell culture, but promotes the initial attachment and spreading of the osteoblasts on the modified Ti6Al4V surface within 15 min. After direct bacterial inoculation of the active sample, the PHMB film reacts antimicrobially against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative strains (Pseudomonas aeruginosa, Escherichia coli) after surface contact. The bactericidal efficacy is only slightly reduced after using of the same specimen for re-testing the antibacterial activity. MG63 cells adhere and proliferate within 48 h on a PHMB film-containing Ti6Al4V surface, which has been pre-contaminated with S. aureus. Bacterial biofilms were only revealed in controls without PHMB.


Assuntos
Biguanidas/farmacologia , Peróxido de Hidrogênio/química , Titânio/química , Molhabilidade/efeitos dos fármacos , Adsorção , Ligas , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/farmacologia , Biguanidas/química , Biofilmes , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...