Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35055201

RESUMO

In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800 °C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2-3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with respect to the substrate were observed for the ~4.2 nm one. Such different configurations indicate the prevalence of different mechanisms (i.e., vapour-solid surface reaction or S diffusion within the film) as a function of the thickness. The uniform thickness distribution of the few-layer and multilayer MoS2 was confirmed by Raman mapping. Furthermore, the correlative plot of the characteristic A1g-E2g Raman modes revealed a compressive strain (ε ≈ -0.78 ± 0.18%) and the coexistence of n- and p-type doped areas in the few-layer MoS2 on SiO2, where the p-type doping is probably due to the presence of residual MoO3. Nanoscale resolution current mapping by C-AFM showed local inhomogeneities in the conductivity of the few-layer MoS2, which are well correlated to the lateral changes in the strain detected by Raman. Finally, characteristic spectroscopic signatures of the defects/disorder in MoS2 films produced by sulfurization were identified by a comparative analysis of Raman and photoluminescence (PL) spectra with CVD grown MoS2 flakes.

3.
ACS Appl Mater Interfaces ; 13(41): 49232-49241, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609127

RESUMO

Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications. Here, we first devised a route to achieve the stable electrostatic binding of carbon dots to multi- or single-walled carbon nanotubes, as confirmed by several experimental observations. The photoluminescence of carbon dots is strongly quenched when they contact either semiconductive or conductive nanotubes, indicating a strong electronic coupling to both. Theoretical simulations predict a favorable energy level alignment within these complexes, suggesting a photoinduced electron transfer from dots to nanotubes, which is a process of high functional interest. Femtosecond transient absorption confirms indeed an ultrafast (<100 fs) electron transfer independent of nanotubes being conductive or semiconductive in nature, followed by a much slower back electron transfer (≈60 ps) from the nanotube to the carbon dots. The high degree of charge separation and delocalization achieved in these nanohybrids entails significant photocatalytic properties, as we demonstrate by the reduction of silver ions in solution. The results are very promising in view of using these "all-carbon" nanohybrids as efficient light harvesters for applications in artificial photocatalysis and photosynthesis.

4.
ACS Appl Mater Interfaces ; 13(26): 31248-31259, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165956

RESUMO

Gold-assisted mechanical exfoliation currently represents a promising method to separate ultralarge (centimeter scale) transition metal dichalcogenide (TMD) monolayers (1L) with excellent electronic and optical properties from the parent van der Waals (vdW) crystals. The strong interaction between Au and chalcogen atoms is key to achieving this nearly perfect 1L exfoliation yield. On the other hand, it may significantly affect the doping and strain of 1L TMDs in contact with Au. In this paper, we systematically investigated the morphology, strain, doping, and electrical properties of large area 1L MoS2 exfoliated on ultraflat Au films (0.16-0.21 nm roughness) and finally transferred to an insulating Al2O3 substrate. Raman mapping and correlative analysis of the E' and A1' peak positions revealed a moderate tensile strain (ε ≈ 0.2%) and p-type doping (n ≈ -0.25 × 1013 cm-2) of 1L MoS2 in contact with Au. Nanoscale resolution current mapping and current-voltage (I-V) measurements by conductive atomic force microscopy (C-AFM) showed direct tunneling across the 1L MoS2 on Au, with a broad distribution of tunneling barrier values (ΦB from 0.7 to 1.7 eV) consistent with p-type doping of MoS2. After the final transfer of 1L MoS2 on Al2O3/Si, the strain was converted to compressive strain (ε ≈ -0.25%). Furthermore, an n-type doping (n ≈ 0.5 × 1013 cm-2) was deduced by Raman mapping and confirmed by electrical measurements of an Al2O3/Si back-gated 1L MoS2 transistor. These results provide a deeper understanding of the Au-assisted exfoliation mechanism and can contribute to its widespread application for the realization of novel devices and artificial vdW heterostructures.

5.
ACS Appl Mater Interfaces ; 8(16): 10636-46, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27058762

RESUMO

Diamond-like carbon (DLC) films on polyethylene terephthalate (PET) are nowadays intensively studied composites due to their excellent gas barrier properties and biocompatibility. Despite their applicative features being highly explored, the interface properties and structural film evolution of DLC coatings on PET during deposition processes are still sparsely investigated. In this study two different types of DLC films were gradually deposited on PET by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) using acetylene plasma. The surface morphology of the deposited samples has been analyzed by atomic force microscopy (AFM). Their chemical composition was investigated by diffusive reflectance infrared Fourier transform (DRIFT) and Raman spectroscopy analysis and the surface wettability by contact angle measurements. Subplantation processes and interface effects are revealed through the morphological and chemical analysis of both types. During plasma deposition processes the increasing carbon load causes the rise of intrinsic film stress. It is proven that stress release phenomena cause the transition between polymer-like to a more cross-linked DLC network by folding dehydrogenated chains into closed 6-fold rings. These findings significantly lead to an enhanced understanding in DLC film growth mechanism by RF-PECVD processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...