Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(15): 22891-22898, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752542

RESUMO

Self-assembled plasmonic metasurfaces are promising optical platforms to achieve accessible flat optics, due to their strong light-matter interaction, nanometer length scale precision, large area, light weight, and high-throughput fabrication. Here, using photothermal continuous wave laser lithography, we show the spectral and spatial tuning of metasurfaces comprised of a monolayer of ligand capped hexagonally packed gold nanospheres. To tune the spectral response of the metasurfaces, we show that by controlling the intensity of a laser focused onto the metasurface that the absorption peak can be reconfigured from the visible to near-infrared wavelength. The irreversible spectral tuning mechanism is attributed to photothermal modification of the surface morphology. Combining self-assembled metasurfaces with laser lithography, we demonstrate an optically thin (λ/42), spectrally selective plasmonic Fresnel zone plate. This work establishes a new pathway for creating flat, large area, frequency selective optical elements using self-assembled plasmonic metasurfaces and laser lithography.

2.
ACS Nano ; 13(4): 3875-3883, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30794377

RESUMO

Information display utilizing plasmonic color generation has recently emerged as an alternative paradigm to traditional printing and display technologies. However, many implementations so far have either presented static pixels with a single display state or rely on relatively slow switching mechanisms such as chemical transformations or liquid crystal transitions. Here, we demonstrate spatial, spectral, and temporal control of light using dynamic plasmonic pixels that function through the electric-field-induced alignment of plasmonic nanorods in organic suspensions. By tailoring the geometry and composition (Au and Au@Ag) of the nanorods, we illustrate light modulation across a significant portion of the visible and infrared spectrum (600-2400 nm). The fast (∼30 µs), reversible nanorod alignment is manifested as distinct color changes, characterized by shifts of observed chromaticity and luminance. Integration into larger device architectures is showcased by the fabrication of a seven-segment numerical indicator. The control of light on demand achieved in these dynamic plasmonic pixels establishes a favorable platform for engineering high-performance optical devices.

3.
Langmuir ; 33(50): 14325-14331, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172535

RESUMO

A new method for enhancing photoluminescence from quantum dot (QD)/polymer nanocomposite films is proposed. Poly(lauryl methacrylate) (PLMA) thin films containing embedded QDs are intentionally allowed to undergo dewetting on substrates by exposure to a nonsolvent vapor. After controlled dewetting, films exhibited typical dewetting morphologies with increased amounts of scattering that served to outcouple photoluminescence from the film and reduce internal light propagation within the film. Up to a 5-fold enhancement of the film emission was achieved depending on material factors such as the initial film thickness and QD concentration within the film. An increase in initial film thickness was shown to increase the dewetted maximum feature size and its characteristic length until a critical thickness was reached where dewetting became inhibited. A unique light exposure-based photopatterning method is also presented for the creation of high contrast emissive patterns as guided by spatially controlled dewetting.

4.
Chem Rev ; 117(20): 12942-13038, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28901750

RESUMO

The robust, sensitive, and selective detection of targeted biomolecules in their native environment by prospective nanostructures holds much promise for real-time, accurate, and high throughput biosensing. However, in order to be competitive, current biosensor nanotechnologies need significant improvements, especially in specificity, integration, throughput rate, and long-term stability in complex bioenvironments. Advancing biosensing nanotechnologies in chemically "noisy" bioenvironments require careful engineering of nanoscale components that are highly sensitive, biorecognition ligands that are capable of exquisite selective binding, and seamless integration at a level current devices have yet to achieve. This review summarizes recent advances in the synthesis, assembly, and applications of nanoengineered reporting and transducing components critical for efficient biosensing. First, major classes of nanostructured components, both inorganic reporters and organic transducers, are discussed in the context of the synthetic control of their individual compositions, shapes, and properties. Second, the design of surface functionalities and transducing path, the characterization of interfacial architectures, and the integration of multiple nanoscale components into multifunctional ordered nanostructures are extensively examined. Third, examples of current biosensing structures created from hybrid nanomaterials are reviewed, with a distinct emphasis on the need to tailor nanosensor designs to specific operating environments. Finally, we offer a perspective on the future developments of nanohybrid materials and future nanosensors, outline possible directions to be pursued that may yield breakthrough results, and envision the exciting potential of high-performance nanomaterials that will cause disruptive improvements in the field of biosensing.


Assuntos
Técnicas Biossensoriais , Nanoestruturas/química , Nanotecnologia
5.
ACS Appl Mater Interfaces ; 8(20): 13064-75, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27145297

RESUMO

We present a rational approach to fabricating plasmonically active hybrid polymer-metal nanomaterials with electrochemical tunability of the localized surface plasmon resonances (LSPRs) of noble metal nanostructures embedded in an electroactive polymer matrix. The key requirement for being able to significantly modulate the LSPR band position is a close overlap between the refractive index change [Δn(λ)] of a stimuli-responsive polymeric matrix and the intrinsic LSPR bands. For this purpose, gold nanorods with a controlled aspect ratio, synthesized to provide high refractive index sensitivity while maintaining good oxidative stability, were combined with a solution-processable electroactive and electrochromic polymer (ECP): alkoxy-substituted poly(3,4-propylenedioxythiophene) [PProDOT(CH2OEtHx)2]. Spectral characteristics of the ECP, in particular the Δn(λ) variation, were evaluated as the material was switched between oxidized and reduced states. We fabricated ultrathin plasmonic electrochromic hybrid films consisting of gold nanorods and ECP that exhibited a large, stable, and reversible LSPR modulation of up to 25-30 nm with an applied electrical potential. Finite-difference time-domain (FDTD) simulations confirm a good match between the experimentally measured refractive index change in the ECP and the plasmonic response during electrochemical modulations.

6.
ACS Appl Mater Interfaces ; 8(6): 4031-41, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26812528

RESUMO

We demonstrate the fabrication of novel functional gel coatings with randomized physical and chemical patterns that enable dual encoding ability to realize unclonable optical tags. This design is based on swelling-mediated massive reconstruction of an ultrathin responsive gelatinous polymer film uniformly adsorbed with plasmonic nanostructures into a randomized network of interacting folds, resulting in bright electromagnetic hotspots within the folds. We reveal a strong correlation between the topology and near-field electromagnetic field enhancement due to the intimate contact between two plasmonic surfaces within the folds, each of them representing a unique combination of local topography and chemical distribution caused by the formation of electromagnetic hotspots. Because of the efficient trapping of the Raman reporters within the uniquely distributed electromagnetic hotspots, the surface enhanced Raman scattering enhancement from the morphed plasmonic gel was found to be nearly 40 times higher compared to that from the pristine plasmonic gel. Harnessing the nondeterministic nature of the folds, the folded plasmonic gel can be employed as a multidimensional (with dual topo-chemical encoding) optical taggant for prospective anticounterfeiting applications. Such novel optical tags based on the spontaneous folding process are virtually impossible to replicate because of the combination of nondeterministic physical patterns and chemical encoding.

7.
Nanoscale ; 7(12): 5230-9, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25707955

RESUMO

We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging.

8.
ACS Appl Mater Interfaces ; 7(8): 4902-12, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25671557

RESUMO

We report on the synthesis of novel branched organic-inorganic azo-polyhedral oligomeric silsesquioxane (POSS) conjugates (Azo-POSS) and their use as a stable active medium to induce reversible plasmonic modulations of embedded metal nanostructures. A dense monolayer of silver nanocubes was deposited on a quartz substrate using the Langmuir-Blodgett technique and subsequently coated with an ultrathin Azo-POSS layer. The reversible light-induced photoisomerization between the trans and cis states of the azobenzene-terminated branched POSS material results in significant changes in the refractive index (up to 0.17) at a wavelength of 380 nm. We observed that the pronounced and reversible change in the surrounding refractive index results in a corresponding hypsochromic plasmonic shift of 6 nm in the plasmonic band of the embedded silver nanocubes. The reversible tuning of the plasmonic modes of noble-metal nanostructures using a variable-refractive-index medium opens up the possibility of fabricating photoactive, hybrid, ultrathin coatings with robust, real-time, photoinitiated responses for prospective applications in photoactive materials that can be reversibly tuned by light illumination.

9.
Chem Commun (Camb) ; 47(36): 10085-7, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21829850

RESUMO

Focused ion beam guided anodization enables the fabrication of TiO(2) nanotubes in a square arrangement with square cell shapes and in a graphite lattice arrangement with triangular cell shapes, which is impossible through self-organized anodization. TiO(2) nanotubes in sunflower patterns are also obtained, which demonstrates the great potential of guided anodization in fabricating asymmetrical nanotubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...