Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 13968, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562373

RESUMO

Coastal erosion outpaces land generation along many of the world's deltas and a significant percentage of shorelines, and human-caused alterations to coastal sediment budgets can be important drivers of this erosion. For sediment-starved and erosion-prone coasts, large-scale enhancement of sediment supply may be an important, but poorly understood, management option. Here we provide new topographic measurements that show patterns and trends of beach accretion following the restoration of sediment supply from a massive dam removal project. River sediment was initially deposited in intertidal-to-subtidal deltaic lobes, and this sediment was reworked by ocean waves into subaerial river mouth bars over time scales of several months. These river mouth bars welded to the shoreline and then initiated waves of sediment accretion along adjacent upcoast and downcoast beaches. Although the downcoast shoreline has a high wave-angle setting, the sedimentation waves straightened the downcoast shoreline rather than forming self-organized quasi-periodic instabilities, which suggests that simple coastal evolution theory did not hold under these conditions. Combined with other mega-nourishment projects, these findings provide new understanding of littoral responses to the restoration of sediment supplies.

2.
Sci Rep ; 8(1): 13279, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185796

RESUMO

Sediment pulses can cause widespread, complex changes to rivers and coastal regions. Quantifying landscape response to sediment-supply changes is a long-standing problem in geomorphology, but the unanticipated nature of most sediment pulses rarely allows for detailed measurement of associated landscape processes and evolution. The intentional removal of two large dams on the Elwha River (Washington, USA) exposed ~30 Mt of impounded sediment to fluvial erosion, presenting a unique opportunity to quantify source-to-sink river and coastal responses to a massive sediment-source perturbation. Here we evaluate geomorphic evolution during and after the sediment pulse, presenting a 5-year sediment budget and morphodynamic analysis of the Elwha River and its delta. Approximately 65% of the sediment was eroded, of which only ~10% was deposited in the fluvial system. This restored fluvial supply of sand, gravel, and wood substantially changed the channel morphology. The remaining ~90% of the released sediment was transported to the coast, causing ~60 ha of delta growth. Although metrics of geomorphic change did not follow simple time-coherent paths, many signals peaked 1-2 years after the start of dam removal, indicating combined impulse and step-change disturbance responses.

3.
PLoS One ; 12(12): e0187742, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220368

RESUMO

The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.


Assuntos
Ecossistema , Sedimentos Geológicos , Animais , Biodiversidade , Peixes/classificação , Invertebrados/classificação , Rios , Água do Mar , Alga Marinha , Washington
4.
Sci Total Environ ; 484: 331-43, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24703225

RESUMO

While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated.


Assuntos
Estuários , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...