Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Seizure ; 91: 66-71, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34102378

RESUMO

PURPOSE: Posterior quadrant disconnection (PQD) is a surgical procedure for medically refractory epilepsy (MRE) involving diffuse regions of the temporo-parieto-occipital lobes. We sought to compare factors and efficacy according to PQD extent. METHODS: We performed a systematic review of the literature reporting the use of PQD since 2004. We analyzed various characteristics of pooled cases, including the role of preoperative studies in patient selection, intraoperative techniques, and outcomes. RESULTS: Our review of 137 patients from nine studies revealed 66% undergoing total PQD and 34% undergoing partial PQD. Interictal electroencephalography (EEG) findings were predominantly characterized as lateralized for total PQD (56%) and localized within the ipsilateral posterior quadrant in patients undergoing partial PQD (53%). Metabolic functional studies [positron emission tomography (PET) or ictal single-photon emission computed tomography (SPECT)] played a role in surgical decision-making in 42% of patients who underwent total PQD. Wada and/or functional magnetic resonance imaging (fMRI) was more often utilized for partial PQD (22%) than total PQD (3%) as was intracranial electroencephalography (icEEG) (30% versus 13%, respectively). Overall, 75% of total PQD patients achieved seizure freedom [defined as Engel I or International League Against Epilepsy (ILAE) Class 1 outcome] in comparison to 63% of partial PQD patients (p = .078). New visual field deficits were seen in 12% and new or worsened hemiparesis in 6%. For patients in either cohort, concordance of interictal and ictal EEG findings was found to be predictive of seizure freedom (p = .048). CONCLUSION: Both total and partial PQD represent effective alternatives for managing patients with MRE whose seizure onset zone (SOZ) involves a diffuse region within the posterior quadrant. While PET and/or SPECT frequently aided in the decision to proceed with total PQD, patients who underwent a tailored, partial multilobar resection were more likely to undergo Wada and/or fMRI testing as well as stage I icEEG studies.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento
2.
Neurology ; 96(18): e2251-e2260, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34038384

RESUMO

OBJECTIVE: To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS: We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS: Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION: Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Convulsões Febris/diagnóstico , Convulsões Febris/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem
3.
Epilepsy Res ; 168: 106482, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33189068

RESUMO

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental disorder frequently associated with epilepsy and epilepsy is a leading cause of death in ASD patients. Despite growing interest in genetic, neurophysiological and clinical overlaps, data on ictal electroencephalographic (EEG) recordings in ASD are lacking since behavioral disorders often make it difficult to obtain EEG recordings. We examined ictal EEG features in a consecutive series of patients with ASD and epilepsy. METHODS: We retrospectively identified 400 consecutive patients with ASD and epilepsy at our Level 4 Epilepsy center between 2015 and 2019; 45 had at least one EEG-recorded seizure captured. Demographics, age of nonfebrile seizure onset, age of ASD diagnosis, language, magnetic resonance imagining findings, genetic testing and EEG studies were reviewed. Seizures were classified by semiologic and electrographic features. Ictal findings were analyzed. RESULTS: A total of 497 seizures were captured in 45 patients: 20 patients with focal onset epilepsy had 126 seizures (median: 1, range: 1-30), 17 patients with generalized onset epilepsy had 88 seizures (median: 2, range: 1-15), 7 patients with Lennox-Gastaut syndrome had 270 seizures (median: 12, range: 1-74) and one patient had both right hemisphere focal and generalized onsets (12 focal, 1 generalized). SIGNIFICANCE: Our study is the first to analyze a large set of ictal data in patients with autism spectrum disorder, a population traditionally difficult to obtain ictal recordings. Our results confirm the diverse spectrum of seizure types and provide clinical-EEG correlates of seizures in ASD patients. Both focal-onset and generalized-onset seizures were recorded, confirming that ASD patients have higher rates of both focal and generalized epilepsy syndromes. Among patients with focal epilepsy, temporal and frontal onsets were frequent, suggesting the possibility of epilepsy surgery or brain stimulation. EEG to classify seizures and epilepsies is critical to determine therapeutic options and effort should be made to obtain EEGs in this heterogenous population.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Eletroencefalografia , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/fisiopatologia , Adolescente , Adulto , Transtorno do Espectro Autista/complicações , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsias Parciais/tratamento farmacológico , Epilepsia Generalizada/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/complicações , Convulsões/diagnóstico , Adulto Jovem
4.
Epilepsy Behav ; 112: 107389, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890796

RESUMO

Drug-resistant focal epilepsy (DRFE) in children can impair cognition and behavior, and lead to premature death. Increased pediatric epilepsy surgery numbers reflect the improvements in seizure control and long-term developmental outcomes. Yet, many children with DRFE are not candidates for surgical resection due to overlap of the seizure network with eloquent cortex or multiple seizure-onset zones, making surgery dangerous or ineffective. In adults, responsive neurostimulation (RNS System) therapy is safe and effective treatment for DRFE with one or two seizure foci, especially when the seizure focus is in eloquent cortex. We present six pediatric patients with DRFE who underwent RNS implantation. Our outcomes demonstrate safety, decreased clinical seizure frequency, as well as improved functional status and quality of life. Changes in the clinical seizure semiology and frequency occurred in conjunction with adjustments to the stimulation parameters, supporting the efficacy of responsive neuromodulation in children.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Adulto , Córtex Cerebral , Criança , Epilepsia Resistente a Medicamentos/terapia , Epilepsia/terapia , Humanos , Qualidade de Vida
5.
Epilepsia ; 61(8): 1749-1757, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32658325

RESUMO

OBJECTIVE: The RNS System is a direct brain-responsive neurostimulation system that is US Food and Drug Administration-approved for adults with medically intractable focal onset seizures based on safety and effectiveness data from controlled clinical trials. The purpose of this study was to retrospectively evaluate the real-world safety and effectiveness of the RNS System. METHODS: Eight comprehensive epilepsy centers conducted a chart review of patients treated with the RNS System for at least 1 year, in accordance with the indication for use. Data included device-related serious adverse events and the median percent change in disabling seizure frequency from baseline at years 1, 2, and 3 of treatment and at the most recent follow-up. RESULTS: One hundred fifty patients met the criteria for analysis. The median reduction in seizures was 67% (interquartile range [IQR] = 33%-93%, n = 149) at 1 year, 75% (IQR = 50%-94%, n = 93) at 2 years, 82% (IQR = 50%-96%, n = 38) at ≥3 years, and 74% (IQR = 50%-96%, n = 150) at last follow-up (mean = 2.3 years). Thirty-five percent of patients had a ≥90% seizure frequency reduction, and 18% of patients reported being clinically seizure-free at last follow-up. Seizure frequency reductions were similar regardless of patient age, age at epilepsy onset, duration of epilepsy, seizure onset in mesial temporal or neocortical foci, magnetic resonance imaging findings, prior intracranial monitoring, prior epilepsy surgery, or prior vagus nerve stimulation treatment. The infection rate per procedure was 2.9% (6/150 patients); five of the six patients had an implant site infection, and one had osteomyelitis. Lead revisions were required in 2.7% (4/150), and 2.0% (3/150) of patients had a subdural hemorrhage, none of which had long-lasting neurological consequences. SIGNIFICANCE: In this real-world experience, safety was similar and clinical seizure outcomes exceeded those of the prospective clinical trials, corroborating effectiveness of this therapy and suggesting that clinical experience has informed more effective programming.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/métodos , Epilepsias Parciais/terapia , Neuroestimuladores Implantáveis , Adolescente , Adulto , Idoso , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
6.
Neurology ; 95(9): e1244-e1256, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32690786

RESUMO

OBJECTIVE: To prospectively evaluate safety and efficacy of brain-responsive neurostimulation in adults with medically intractable focal onset seizures (FOS) over 9 years. METHODS: Adults treated with brain-responsive neurostimulation in 2-year feasibility or randomized controlled trials were enrolled in a long-term prospective open label trial (LTT) to assess safety, efficacy, and quality of life (QOL) over an additional 7 years. Safety was assessed as adverse events (AEs), efficacy as median percent change in seizure frequency and responder rate, and QOL with the Quality of Life in Epilepsy (QOLIE-89) inventory. RESULTS: Of 256 patients treated in the initial trials, 230 participated in the LTT. At 9 years, the median percent reduction in seizure frequency was 75% (p < 0.0001, Wilcoxon signed rank), responder rate was 73%, and 35% had a ≥90% reduction in seizure frequency. We found that 18.4% (47 of 256) experienced ≥1 year of seizure freedom, with 62% (29 of 47) seizure-free at the last follow-up and an average seizure-free period of 3.2 years (range 1.04-9.6 years). Overall QOL and epilepsy-targeted and cognitive domains of QOLIE-89 remained significantly improved (p < 0.05). There were no serious AEs related to stimulation, and the sudden unexplained death in epilepsy (SUDEP) rate was significantly lower than predefined comparators (p < 0.05, 1-tailed χ2). CONCLUSIONS: Adjunctive brain-responsive neurostimulation provides significant and sustained reductions in the frequency of FOS with improved QOL. Stimulation was well tolerated; implantation-related AEs were typical of other neurostimulation devices; and SUDEP rates were low. CLINICALTRIALSGOV IDENTIFIER: NCT00572195. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that brain-responsive neurostimulation significantly reduces focal seizures with acceptable safety over 9 years.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/métodos , Epilepsias Parciais/terapia , Neuroestimuladores Implantáveis , Qualidade de Vida , Adolescente , Adulto , Idoso , Transtorno Depressivo/epidemiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/psicologia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/psicologia , Feminino , Seguimentos , Humanos , Hemorragias Intracranianas/epidemiologia , Masculino , Transtornos da Memória/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Infecções Relacionadas à Prótese/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estado Epiléptico/epidemiologia , Morte Súbita Inesperada na Epilepsia/epidemiologia , Suicídio/estatística & dados numéricos , Resultado do Tratamento , Adulto Jovem
7.
Epilepsia ; 61(3): 408-420, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32072621

RESUMO

OBJECTIVE: To describe seizure outcomes in patients with medically refractory epilepsy who had evidence of bilateral mesial temporal lobe (MTL) seizure onsets and underwent MTL resection based on chronic ambulatory intracranial EEG (ICEEG) data from a direct brain-responsive neurostimulator (RNS) system. METHODS: We retrospectively identified all patients at 17 epilepsy centers with MTL epilepsy who were treated with the RNS System using bilateral MTL leads, and in whom an MTL resection was subsequently performed. Presumed lateralization based on routine presurgical approaches was compared to lateralization determined by RNS System chronic ambulatory ICEEG recordings. The primary outcome was frequency of disabling seizures at last 3-month follow-up after MTL resection compared to seizure frequency 3 months before MTL resection. RESULTS: We identified 157 patients treated with the RNS System with bilateral MTL leads due to presumed bitemporal epilepsy. Twenty-five patients (16%) subsequently had an MTL resection informed by chronic ambulatory ICEEG (mean = 42 months ICEEG); follow-up was available for 24 patients. After MTL resection, the median reduction in disabling seizures at last follow-up was 100% (mean: 94%; range: 50%-100%). Nine patients (38%) had exclusively unilateral electrographic seizures recorded by chronic ambulatory ICEEG and all were seizure-free at last follow-up after MTL resection; eight of nine continued RNS System treatment. Fifteen patients (62%) had bilateral MTL electrographic seizures, had an MTL resection on the more active side, continued RNS System treatment, and achieved a median clinical seizure reduction of 100% (mean: 90%; range: 50%-100%) at last follow-up, with eight of fifteen seizure-free. For those with more than 1 year of follow-up (N = 21), 15 patients (71%) were seizure-free during the most recent year, including all eight patients with unilateral onsets and 7 of 13 patients (54%) with bilateral onsets. SIGNIFICANCE: Chronic ambulatory ICEEG data provide information about lateralization of MTL seizures and can identify additional patients who may benefit from MTL resection.


Assuntos
Lobectomia Temporal Anterior/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Lobo Temporal/cirurgia , Adulto , Idoso , Epilepsia Resistente a Medicamentos/fisiopatologia , Terapia por Estimulação Elétrica , Eletrocorticografia , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Humanos , Neuroestimuladores Implantáveis , Masculino , Pessoa de Meia-Idade , Monitorização Ambulatorial , Procedimentos Neurocirúrgicos , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
8.
Am J Med Genet A ; 176(11): 2470-2478, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30244534

RESUMO

De novo mutations of the TRIM8 gene, which codes for a tripartite motif protein, have been identified using whole exome sequencing (WES) in two patients with epileptic encephalopathy (EE), but these reports were not sufficient to conclude that TRIM8 was a novel gene responsible for EE. Here we report four additional patients presenting with EE and de novo truncating mutations of TRIM8 detected by WES, and give further details of the patient previously reported by the Epi4K consortium. Epilepsy of variable severity was diagnosed in children aged 2 months to 3.5 years of age. All patients had developmental delay of variable severity with no or very limited language, often associated with behavioral anomalies and unspecific facial features or MRI brain abnormalities. The phenotypic variability observed in these patients appeared related to the severity of the epilepsy. One patient presented pharmacoresistant EE with regression, recurrent infections and nephrotic syndrome, compatible with the brain and kidney expression of TRIM8. Interestingly, all mutations were located at the highly conserved C-terminus section of TRIM8. This collaborative study confirms that TRIM8 is a novel gene responsible for EE, possibly associated with nephrotic syndrome. This report brings new evidence on the pathogenicity of TRIM8 mutations and highlights the value of data-sharing to delineate the phenotypic characteristics and biological basis of extremely rare disorders.


Assuntos
Proteínas de Transporte/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Sequência de Aminoácidos , Proteínas de Transporte/química , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/química
9.
Epilepsy Behav ; 88S: 33-38, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30241957

RESUMO

For drug-resistant epilepsy, nonpharmacologic treatments should be considered early rather than late. Of the nondrug treatments, only resective surgery can be curative. Neurostimulation is palliative, i.e., not expected to achieve a seizure-free outcome. While resective surgery is the goal, other options are necessary because the majority of patients with drug-resistant epilepsy are not surgical candidates, and others have seizures that fail to improve with surgery or have only partial improvement but not seizure freedom. Neurostimulation modalities include vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS), each with its own advantages, disadvantages, and side effects. In most scenarios, determined by noninvasive evaluation, especially EEG and MRI, several strategies are reasonable. For focal epilepsies, the choices are between resective surgery, with or without intracranial EEG, and all three modalities of neurostimulation. In situations where resective surgery is likely to result in seizure freedom, such as mesiotemporal lobe epilepsy or lesional focal epilepsy, resection (standard, laser, or radiofrequency) is preferred. For difficult cases like extratemporal nonlesional epilepsies, neurostimulation offers a less invasive option than resective surgery. For generalized and multifocal epilepsies, VNS is an option, RNS is not, and DBS has only limited evidence. "This article is part of the Supplement issue Neurostimulation for Epilepsy."


Assuntos
Algoritmos , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/terapia , Neuroestimuladores Implantáveis , Estimulação do Nervo Vago/métodos , Estimulação Encefálica Profunda/instrumentação , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Eletrocorticografia/instrumentação , Eletrocorticografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Convulsões/diagnóstico , Convulsões/prevenção & controle , Resultado do Tratamento , Estimulação do Nervo Vago/instrumentação
10.
Epilepsy Behav ; 88S: 11-20, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30243756

RESUMO

The responsive neurostimulator (RNS ®, NeuroPace Inc.) has been available clinically since 2013 for the treatment of medically refractory partial epilepsy. Using intracranial electrodes and a cranially implanted device, RNS ® provides on-demand electrical cortical stimulation to reduce seizures. A randomized, multicenter, double-blind clinical trial demonstrated seizure reduction compared with sham stimulation. Seizure reduction was improved and sustained over years in a long-term treatment trial. The RNS ® provides chronic ambulatory electrographic monitoring over years giving unprecedented insight into epilepsy dynamics. Studies to date have looked at the length of time to detecting bilateral seizure onsets in mesial temporal lobe epilepsy (MTLE), demonstrated biorhythms in interictal epileptiform activity over varied time scales, and shown promise in early detection of benefits of adding a new antiepileptic drug. Questions remain as to the boundaries of patient selection and lead placement. "This article is part of the Supplement issue Neurostimulation for Epilepsy."


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/terapia , Epilepsias Parciais/terapia , Neuroestimuladores Implantáveis , Método Duplo-Cego , Epilepsia Resistente a Medicamentos/diagnóstico , Eletrodos Implantados/tendências , Epilepsias Parciais/diagnóstico , Humanos , Neuroestimuladores Implantáveis/tendências , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Convulsões/diagnóstico , Convulsões/prevenção & controle
11.
Epilepsia ; 58(6): 994-1004, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28398014

RESUMO

OBJECTIVE: Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin. METHODS: Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. RESULTS: There were 111 subjects with MTLE; 72% of subjects had bilateral MTL onsets and 28% had unilateral onsets. Subjects had one to four leads placed; only two leads could be connected to the device. Seventy-six subjects had depth leads only, 29 had both depth and strip leads, and 6 had only strip leads. The mean follow-up was 6.1 ± (standard deviation) 2.2 years. The median percent seizure reduction was 70% (last observation carried forward). Twenty-nine percent of subjects experienced at least one seizure-free period of 6 months or longer, and 15% experienced at least one seizure-free period of 1 year or longer. There was no difference in seizure reduction in subjects with and without mesial temporal sclerosis (MTS), bilateral MTL onsets, prior resection, prior intracranial monitoring, and prior vagus nerve stimulation. In addition, seizure reduction was not dependent on the location of depth leads relative to the hippocampus. The most frequent serious device-related adverse event was soft tissue implant-site infection (overall rate, including events categorized as device-related, uncertain, or not device-related: 0.03 per implant year, which is not greater than with other neurostimulation devices). SIGNIFICANCE: Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including patients with unilateral or bilateral MTLE who are not candidates for temporal lobectomy or who have failed a prior MTL resection.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/métodos , Eletroencefalografia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/terapia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/terapia , Adolescente , Adulto , Dominância Cerebral/fisiologia , Eletrodos Implantados , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Epilepsia ; 58(6): 1005-1014, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28387951

RESUMO

OBJECTIVE: Evaluate the seizure-reduction response and safety of brain-responsive stimulation in adults with medically intractable partial-onset seizures of neocortical origin. METHODS: Patients with partial seizures of neocortical origin were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. Additional analyses considered safety and seizure reduction according to lobe and functional area (e.g., eloquent cortex) of seizure onset. RESULTS: There were 126 patients with seizures of neocortical onset. The average follow-up was 6.1 implant years. The median percent seizure reduction was 70% in patients with frontal and parietal seizure onsets, 58% in those with temporal neocortical onsets, and 51% in those with multilobar onsets (last observation carried forward [LOCF] analysis). Twenty-six percent of patients experienced at least one seizure-free period of 6 months or longer and 14% experienced at least one seizure-free period of 1 year or longer. Patients with lesions on magnetic resonance imaging (MRI; 77% reduction, LOCF) and those with normal MRI findings (45% reduction, LOCF) benefitted, although the treatment response was more robust in patients with an MRI lesion (p = 0.02, generalized estimating equation [GEE]). There were no differences in the seizure reduction in patients with and without prior epilepsy surgery or vagus nerve stimulation. Stimulation parameters used for treatment did not cause acute or chronic neurologic deficits, even in eloquent cortical areas. The rates of infection (0.017 per patient implant year) and perioperative hemorrhage (0.8%) were not greater than with other neurostimulation devices. SIGNIFICANCE: Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including adults with seizures of neocortical onset, and those with onsets from eloquent cortex.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/métodos , Eletroencefalografia , Neocórtex/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Estimulação Encefálica Profunda/instrumentação , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/terapia , Epilepsia Parcial Complexa/fisiopatologia , Epilepsia Parcial Complexa/terapia , Epilepsia Motora Parcial/fisiopatologia , Epilepsia Motora Parcial/terapia , Epilepsia Tônico-Clônica/fisiopatologia , Epilepsia Tônico-Clônica/terapia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Neurology ; 85(17): 1512-21, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26423430

RESUMO

Epilepsy is common in people with intellectual and developmental disabilities (IDD). In adulthood, patients with IDD and epilepsy (IDD-E) have neurologic, psychiatric, medical, and social challenges compounded by fragmented and limited care. With increasing neurologic disability, there is a higher frequency of epilepsy, especially symptomatic generalized and treatment-resistant epilepsies. The causes of IDD-E are increasingly recognized to be genetic based on chromosomal microarray analysis to identify copy number variants, gene panels (epilepsy, autism spectrum disorder, intellectual disability), and whole-exome sequencing. A specific genetic diagnosis may guide care by pointing to comorbid disorders and best therapy. Therapy to control seizures should be individualized, with drug selection based on seizure types, epilepsy syndrome, concomitant medications, and comorbid disorders. There are limited comparative antiepileptic drug data in the IDD-E population. Vagus nerve and responsive neural stimulation therapies and resective surgery should be considered. Among the many comorbid disorders that affect patients with IDD-E, psychiatric and sleep disorders are common but often unrecognized and typically not treated. Transition from holistic and coordinated pediatric to adult care is often a vulnerable period. Communication among adult health care providers is complex but essential to ensure best care when these patients are seen in outpatient, emergency room, and inpatient settings. We propose specific recommendations for minimum care standards for people with IDD-E.


Assuntos
Anticonvulsivantes/uso terapêutico , Deficiências do Desenvolvimento/complicações , Epilepsia/terapia , Deficiência Intelectual/complicações , Procedimentos Neurocirúrgicos , Estimulação do Nervo Vago , Adulto , Continuidade da Assistência ao Paciente , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/terapia , Epilepsia/complicações , Humanos , Transição para Assistência do Adulto/organização & administração
14.
Epilepsia ; 56(6): 959-67, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25988840

RESUMO

OBJECTIVE: Patients with suspected mesial temporal lobe (MTL) epilepsy typically undergo inpatient video-electroencephalography (EEG) monitoring with scalp and/or intracranial electrodes for 1 to 2 weeks to localize and lateralize the seizure focus or foci. Chronic ambulatory electrocorticography (ECoG) in patients with MTL epilepsy may provide additional information about seizure lateralization. This analysis describes data obtained from chronic ambulatory ECoG in patients with suspected bilateral MTL epilepsy in order to assess the time required to determine the seizure lateralization and whether this information could influence treatment decisions. METHODS: Ambulatory ECoG was reviewed in patients with suspected bilateral MTL epilepsy who were among a larger cohort with intractable epilepsy participating in a randomized controlled trial of responsive neurostimulation. Subjects were implanted with bilateral MTL leads and a cranially implanted neurostimulator programmed to detect abnormal interictal and ictal ECoG activity. ECoG data stored by the neurostimulator were reviewed to determine the lateralization of electrographic seizures and the interval of time until independent bilateral MTL electrographic seizures were recorded. RESULTS: Eighty-two subjects were implanted with bilateral MTL leads and followed for 4.7 years on average (median 4.9 years). Independent bilateral MTL electrographic seizures were recorded in 84%. The average time to record bilateral electrographic seizures in the ambulatory setting was 41.6 days (median 13 days, range 0-376 days). Sixteen percent had only unilateral electrographic seizures after an average of 4.6 years of recording. SIGNIFICANCE: About one third of the subjects implanted with bilateral MTL electrodes required >1 month of chronic ambulatory ECoG before the first contralateral MTL electrographic seizure was recorded. Some patients with suspected bilateral MTL seizures had only unilateral electrographic seizures. Chronic ambulatory ECoG in patients with suspected bilateral MTL seizures provides data in a naturalistic setting, may complement data from inpatient video-EEG monitoring, and can contribute to treatment decisions.


Assuntos
Ondas Encefálicas/fisiologia , Eletrocardiografia Ambulatorial , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Lateralidade Funcional/fisiologia , Adolescente , Adulto , Eletrodos Implantados , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
15.
Neurology ; 84(8): 810-7, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25616485

RESUMO

OBJECTIVE: The long-term efficacy and safety of responsive direct neurostimulation was assessed in adults with medically refractory partial onset seizures. METHODS: All participants were treated with a cranially implanted responsive neurostimulator that delivers stimulation to 1 or 2 seizure foci via chronically implanted electrodes when specific electrocorticographic patterns are detected (RNS System). Participants had completed a 2-year primarily open-label safety study (n = 65) or a 2-year randomized blinded controlled safety and efficacy study (n = 191); 230 participants transitioned into an ongoing 7-year study to assess safety and efficacy. RESULTS: The average participant was 34 (±11.4) years old with epilepsy for 19.6 (±11.4) years. The median preimplant frequency of disabling partial or generalized tonic-clonic seizures was 10.2 seizures a month. The median percent seizure reduction in the randomized blinded controlled trial was 44% at 1 year and 53% at 2 years (p < 0.0001, generalized estimating equation) and ranged from 48% to 66% over postimplant years 3 through 6 in the long-term study. Improvements in quality of life were maintained (p < 0.05). The most common serious device-related adverse events over the mean 5.4 years of follow-up were implant site infection (9.0%) involving soft tissue and neurostimulator explantation (4.7%). CONCLUSIONS: The RNS System is the first direct brain responsive neurostimulator. Acute and sustained efficacy and safety were demonstrated in adults with medically refractory partial onset seizures arising from 1 or 2 foci over a mean follow-up of 5.4 years. This experience supports the RNS System as a treatment option for refractory partial seizures. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that for adults with medically refractory partial onset seizures, responsive direct cortical stimulation reduces seizures and improves quality of life over a mean follow-up of 5.4 years.


Assuntos
Estimulação Encefálica Profunda/tendências , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/terapia , Adolescente , Adulto , Idoso , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
16.
Epilepsia ; 55(3): 432-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24621228

RESUMO

OBJECTIVE: To demonstrate the safety and effectiveness of responsive stimulation at the seizure focus as an adjunctive therapy to reduce the frequency of seizures in adults with medically intractable partial onset seizures arising from one or two seizure foci. METHODS: Randomized multicenter double-blinded controlled trial of responsive focal cortical stimulation (RNS System). Subjects with medically intractable partial onset seizures from one or two foci were implanted, and 1 month postimplant were randomized 1:1 to active or sham stimulation. After the fifth postimplant month, all subjects received responsive stimulation in an open label period (OLP) to complete 2 years of postimplant follow-up. RESULTS: All 191 subjects were randomized. The percent change in seizures at the end of the blinded period was -37.9% in the active and -17.3% in the sham stimulation group (p = 0.012, Generalized Estimating Equations). The median percent reduction in seizures in the OLP was 44% at 1 year and 53% at 2 years, which represents a progressive and significant improvement with time (p < 0.0001). The serious adverse event rate was not different between subjects receiving active and sham stimulation. Adverse events were consistent with the known risks of an implanted medical device, seizures, and of other epilepsy treatments. There were no adverse effects on neuropsychological function or mood. SIGNIFICANCE: Responsive stimulation to the seizure focus reduced the frequency of partial-onset seizures acutely, showed improving seizure reduction over time, was well tolerated, and was acceptably safe. The RNS System provides an additional treatment option for patients with medically intractable partial-onset seizures.


Assuntos
Terapia por Estimulação Elétrica/tendências , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/terapia , Neuroestimuladores Implantáveis/tendências , Adolescente , Adulto , Idoso , Método Duplo-Cego , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Epilepsias Parciais/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida/psicologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
17.
Epilepsia ; 54(11): 1898-904, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24116958

RESUMO

PURPOSE: Lennox-Gastaut syndrome (LGS) is a devastating childhood-onset epilepsy syndrome. The cause is unknown in 25% of cases. Little has been described about the specific clinical or electroencephalography (EEG) features of LGS of unknown or genetic cause (LGS(u)). The Epilepsy Phenome/Genome Project (EPGP) aims to characterize LGS(u) by phenotypic analysis of patients with LGS(u) and their parents. METHODS: One hundred thirty-five patients with LGS with no known etiology and their parents were enrolled from 19 EPGP centers in the United States and Australia. Clinical data from medical records, standardized questionnaires, imaging, and EEG were collected with use of online informatics systems developed for EPGP. KEY FINDINGS: LGS(u) in the EPGP cohort had a broad range of onset of epilepsy from 1 to 13 years, was male predominant (p < 0.0002), and was associated with normal development prior to seizure onset in 59.2% of patients. Despite the diagnosis, almost half of the adult patients with LGS(u) completed secondary school. Parents were cognitively normal. All subjects had EEG recordings with generalized epileptiform abnormalities with a spike wave frequency range of 1-5 Hz (median 2 Hz), whereas 8.1% of subjects had EEG studies with a normal posterior dominant rhythm. Almost 12% of patients evolved from West syndrome. SIGNIFICANCE: LGS(u) has distinctive characteristics including a broad age range of onset, male predominance, and often normal development prior to the onset of seizures. Cognitive achievements such as completion of secondary school were possible in half of adult patients. Our phenotypic description of LGS(u) coupled with future genetic studies will advance our understanding of this epilepsy syndrome.


Assuntos
Deficiência Intelectual/genética , Espasmos Infantis/genética , Adolescente , Adulto , Idade de Início , Austrália , Criança , Pré-Escolar , Eletroencefalografia/métodos , Feminino , Genoma Humano , Genótipo , Humanos , Deficiência Intelectual/fisiopatologia , Síndrome de Lennox-Gastaut , Masculino , Pessoa de Meia-Idade , Pais , Fenótipo , Espasmos Infantis/fisiopatologia , Síndrome , Estados Unidos , Adulto Jovem
18.
Nature ; 501(7466): 217-21, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23934111

RESUMO

Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox-Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the ∼4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 × 10(-3)). Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are P = 4.1 × 10(-10) and P = 7.8 × 10(-12), respectively. Other genes with de novo mutations in this cohort include CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HNRNPU, IQSEC2, MTOR and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the fragile X protein (P < 10(-8)), as has been reported previously for autism spectrum disorders.


Assuntos
Deficiência Intelectual/genética , Mutação/genética , Espasmos Infantis/genética , Transtornos Globais do Desenvolvimento Infantil , Estudos de Coortes , Exoma/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Predisposição Genética para Doença/genética , Humanos , Lactente , Deficiência Intelectual/fisiopatologia , Síndrome de Lennox-Gastaut , Masculino , Taxa de Mutação , N-Acetilglucosaminiltransferases/genética , Probabilidade , Receptores de GABA-A/genética , Espasmos Infantis/fisiopatologia
20.
Clin Trials ; 10(4): 568-86, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23818435

RESUMO

BACKGROUND: Epilepsy is a common neurological disorder that affects approximately 50 million people worldwide. Both risk of epilepsy and response to treatment partly depend on genetic factors, and gene identification is a promising approach to target new prediction, treatment, and prevention strategies. However, despite significant progress in the identification of genes causing epilepsy in families with a Mendelian inheritance pattern, there is relatively little known about the genetic factors responsible for common forms of epilepsy and so-called epileptic encephalopathies. Study design The Epilepsy Phenome/Genome Project (EPGP) is a multi-institutional, retrospective phenotype-genotype study designed to gather and analyze detailed phenotypic information and DNA samples on 5250 participants, including probands with specific forms of epilepsy and, in a subset, parents of probands who do not have epilepsy. RESULTS: EPGP is being executed in four phases: study initiation, pilot, study expansion/establishment, and close-out. This article discusses a number of key challenges and solutions encountered during the first three phases of the project, including those related to (1) study initiation and management, (2) recruitment and phenotyping, and (3) data validation. The study has now enrolled 4223 participants. CONCLUSIONS: EPGP has demonstrated the value of organizing a large network into cores with specific roles, managed by a strong Administrative Core that utilizes frequent communication and a collaborative model with tools such as study timelines and performance-payment models. The study also highlights the critical importance of an effective informatics system, highly structured recruitment methods, and expert data review.


Assuntos
Epilepsia/genética , Genótipo , Fenótipo , Pesquisa em Genética , Humanos , Gestão da Informação , Análise de Sequência com Séries de Oligonucleotídeos , Projetos de Pesquisa , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...