Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(2): 794-805, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30476303

RESUMO

Fork stabilization at DNA impediments is key to maintaining replication fork integrity and preventing chromosome breaks. Mrc1 and Tof1 are two known stabilizers that travel with the replication fork. In addition to a structural role, Mrc1 has a DNA damage checkpoint function. Using a yeast model system, we analyzed the role of Mrc1 and Tof1 at expanded CAG repeats of medium and long lengths, which are known to stall replication forks and cause trinucleotide expansion diseases such as Huntington's disease and myotonic dystrophy. We demonstrate that the fork stabilizer but not the checkpoint activation function of Mrc1 is key for preventing DNA breakage and death of cells containing expanded CAG tracts. In contrast, both Mrc1 functions are important in preventing repeat length instability. Mrc1 has a general fork protector role that is evident at forks traversing both repetitive and non-repetitive DNA, though it becomes crucial at long CAG repeat lengths. In contrast, the role of Tof1 in preventing fork breakage is specific to long CAG tracts of 85 or more repeats. Our results indicate that long CAG repeats have a particular need for Tof1 and highlight the importance of fork stabilizers in maintaining fork integrity during replication of structure-forming repeats.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Fragilidade Cromossômica , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Repetições de Trinucleotídeos , Proteínas de Ciclo Celular/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Deleção de Genes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
2.
PLoS Genet ; 7(2): e1001298, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347277

RESUMO

Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.


Assuntos
Instabilidade Genômica/genética , Proteína de Replicação C/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Segregação de Cromossomos , Dano ao DNA , Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Proteína de Replicação C/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Genetics ; 184(1): 65-77, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901069

RESUMO

Trinucleotide repeats can form secondary structures, whose inappropriate repair or replication can lead to repeat expansions. There are multiple loci within the human genome where expansion of trinucleotide repeats leads to disease. Although it is known that expanded repeats accumulate double-strand breaks (DSBs), it is not known which DSB repair pathways act on such lesions and whether inaccurate DSB repair pathways contribute to repeat expansions. Using Saccharomyces cerevisiae, we found that CAG/CTG tracts of 70 or 155 repeats exhibited significantly elevated levels of breakage and expansions in strains lacking MRE11, implicating the Mre11/Rad50/Xrs2 complex in repairing lesions at structure-forming repeats. About two-thirds of the expansions that occurred in the absence of MRE11 were dependent on RAD52, implicating aberrant homologous recombination as a mechanism for generating expansions. Expansions were also elevated in a sae2 deletion background and these were not dependent on RAD52, supporting an additional role for Mre11 in facilitating Sae2-dependent hairpin processing at the repeat. Mre11 nuclease activity and Tel1-dependent checkpoint functions were largely dispensable for repeat maintenance. In addition, we found that intact homologous recombination and nonhomologous end-joining pathways of DSB repair are needed to prevent repeat fragility and that both pathways also protect against repeat instability. We conclude that failure of principal DSB repair pathways to repair breaks that occur within the repeats can result in the accumulation of atypical intermediates, whose aberrant resolution will then lead to CAG expansions, contractions, and repeat-mediated chromosomal fragility.


Assuntos
Fragilidade Cromossômica/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Expansão das Repetições de DNA/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Ciclo Celular/genética , Sequências Repetidas Invertidas , Recombinação Genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
DNA Repair (Amst) ; 7(2): 187-98, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17983848

RESUMO

In Saccharomyces cerevisiae, the base excision DNA repair (BER) pathway has been thought to involve only a multinucleotide (long-patch) mechanism (LP-BER), in contrast to most known cases that include a major single-nucleotide pathway (SN-BER). The key step in mammalian SN-BER, removal of the 5'-terminal abasic residue generated by AP endonuclease incision, is effected by DNA polymerase beta (Polbeta). Computational analysis indicates that yeast Trf4 protein, with roles in sister chromatin cohesion and RNA quality control, is a new member of the X family of DNA polymerases that includes Polbeta. Previous studies of yeast trf4Delta mutants revealed hypersensitivity to methylmethane sulfonate (MMS) but not UV light, a characteristic of BER mutants in other organisms. We found that, like mammalian Polbeta, Trf4 is able to form a Schiff base intermediate with a 5'-deoxyribose-5-phosphate substrate and to excise the abasic residue through a dRP lyase activity. Also like Polbeta, Trf4 forms stable cross-links in vitro to 5'-incised 2-deoxyribonolactone residues in DNA. We determined the sensitivity to MMS of strains with a trf4Delta mutation in a rad27Delta background, in an AP lyase-deficient background (ogg1 ntg1 ntg2), or in a pol4Delta background. Only a RAD27 genetic interaction was detected: there was higher sensitivity for strains mutated in both TRF4 and RAD27 than either single mutant, and overexpression of Trf4 in a rad27Delta background partially suppressed MMS sensitivity. The data strongly suggest a role for Trf4 in a pathway parallel to the Rad27-dependent LP-BER in yeast. Finally, we demonstrate that Trf5 significantly affects MMS sensitivity and thus probably BER efficiency in cells expressing either wild-type Trf4 or a C-terminus-deleted form.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Endonucleases Flap/metabolismo , Ribosemonofosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endonucleases Flap/deficiência , Endonucleases Flap/genética , Immunoblotting , Mutagênese Sítio-Dirigida , Mutação/genética , Oligonucleotídeos/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
5.
DNA Repair (Amst) ; 6(11): 1572-83, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17602897

RESUMO

Replication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks. An important lesion bypass mechanism is the highly conserved post-replication repair (PRR) pathway that is composed of error-prone translesion and error-free bypass branches. EXO1 codes for a Rad2p family member nuclease that has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. In this report, we show EXO1 functions in the MMS2 error-free branch of the PRR pathway independent of the role of EXO1 in DNA mismatch repair (MMR). Consistent with the idea that EXO1 functions independently in two separate pathways, we defined a domain of Exo1p required for PRR distinct from those required for interaction with MMR proteins. We then generated a point mutant exo1 allele that was defective for the function of Exo1p in MMR due to disrupted interaction with Mlh1p, but still functional for PRR. Lastly, by using a compound exo1 mutant that was defective for interaction with Mlh1p and deficient for nuclease activity, we provide further evidence that Exo1p plays both structural and catalytic roles during MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Replicação do DNA/fisiologia , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/fisiologia , Mutação , Alelos , Replicação do DNA/efeitos dos fármacos , Exodesoxirribonucleases/metabolismo , Metanossulfonato de Metila/farmacologia , Saccharomyces cerevisiae/enzimologia
6.
Cell ; 124(2): 315-29, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16439206

RESUMO

The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.


Assuntos
Envelhecimento/metabolismo , Doenças Genéticas Inatas/genética , Instabilidade Genômica , Sirtuínas/genética , Sirtuínas/fisiologia , Animais , Proliferação de Células , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Doenças Genéticas Inatas/patologia , Humanos , Antígeno Ki-1/metabolismo , Linfócitos/imunologia , Camundongos , Camundongos Knockout , Fenótipo , Tolerância a Radiação , Transdução de Sinais , Sirtuínas/deficiência
7.
J Biol Chem ; 277(33): 29963-72, 2002 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-12042306

RESUMO

Ntg2p is a DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidatively damaged DNA in Saccharomyces cerevisiae. Using a yeast two-hybrid screen and a GST in vitro transcription and translation assay, the mismatch repair (MMR) protein Mlh1p was demonstrated to interact physically with Ntg2p. The Mlh1p binding site maps to amino acids residues 15-40 of Ntg2p. The Ntg2p binding site is localized in the C-terminal end (483-769) of Mlh1p. Overproduction of Ntg2p results in a mutator phenotype with enhanced frameshift reversion frequency, suggesting partial inhibition of the MMR pathway. In contrast, inactivation of NTG2 does not enhance mutagenesis, indicating that Ntg2p is not required for MMR. Site-directed mutagenesis of the Mlh1p binding domain of Ntg2p revealed three amino acids (Ser(24), Tyr(26), Phe(27)) that are absolutely required for Ntg2p-Mlh1p interaction. These residues are part of a motif found in Ntg2p (Arg(23)-Ser(24)-Lys(25)-Tyr(26)-Phe(27)), Exo1p (Arg(444)-Ser(445)-Lys(446)-Phe(447)-Phe(448)), and Sgs1p (Lys(1383)-Ser(1384)-Lys(1385)-Phe(1386)-Phe(1387)). In these three proteins, the motif is part of the domain that interacts with the C-terminal end of Mlh1p. Furthermore, S445A, F447A, and F448A mutants of Exo1p do not bind Mlh1p, but the wild type Exo1p does. Therefore, we propose that the R/K-S-R/K-Y/F-Y/F sequence could define a Mhl1 binding motif. The results also suggest that base excision repair and MMR can cooperate to prevent deleterious effects of oxidative DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas Fúngicas/metabolismo , N-Glicosil Hidrolases/metabolismo , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Primers do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Proteína 1 Homóloga a MutL , Mutagênese Sítio-Dirigida , Ligação Proteica , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
8.
Free Radic Biol Med ; 32(12): 1244-53, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12057762

RESUMO

8-Oxo-7,8-dihydroguanine (8-oxoG) is produced abundantly in DNA exposed to free radicals and reactive oxygen species. The biological relevance of 8-oxoG has been unveiled by the study of two mutator genes in Escherichia coli, fpg, and mutY. Both genes code for DNA N-glycosylases that cooperate to prevent the mutagenic effects of 8-oxoG in DNA. In Saccharomyces cerevisiae, the OGG1 gene encodes a DNA N-glycosylase/AP lyase, which is the functional homologue of the bacterial fpg gene product. The inactivation of OGG1 in yeast creates a mutator phenotype that is specific for the generation of GC to TA transversions. In yeast, nucleotide excision repair (NER) also contributes to the release of 8-oxoG in damaged DNA. Furthermore, mismatch repair (MMR) mediated by MSH2/MSH6/MLH1 plays a major role in the prevention of the mutagenic effect of 8-oxoG. Indeed, MMR acts as the functional homologue of the MutY protein of E. coli, excising the adenine incorporated opposite 8-oxoG. Finally, the efficient and accurate replication of 8-oxoG by the yeast DNA polymerase eta also prevents 8-oxoG-induced mutagenesis. The aim of this review is to summarize recent literature dealing with the replication and repair of 8-oxoG in Saccharomyces cerevisiae, which can be used as a paradigm for DNA repair in eukaryotes.


Assuntos
Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Desoxiguanosina/análogos & derivados , Desoxiguanosina/genética , Proteínas de Escherichia coli , Saccharomyces cerevisiae/genética , 8-Hidroxi-2'-Desoxiguanosina , Sequência de Aminoácidos , Animais , Dano ao DNA , DNA-Formamidopirimidina Glicosilase , Desoxiguanosina/toxicidade , Radicais Livres , Humanos , Dados de Sequência Molecular , Mutagênese , N-Glicosil Hidrolases/fisiologia , Estresse Oxidativo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...