Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 260: 114391, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38781750

RESUMO

The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.

2.
Discov Nano ; 18(1): 111, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682347

RESUMO

Carbon dots (CDs) are easy-obtained nanoparticles with wide range of biological activity; however, their toxicity after prolonged exposure is poorly investigated. So, in vitro and in vivo toxicity of CDs with the surfaces enriched with hydroxylated hydrocarbon chains and methylene groups (CD_GE), carboxyl and phenol groups accompanied with nitrogen (CD_3011), trifluoromethyl (CDF19) or toluidine and aniline groups (CDN19) were aimed to be discovered. CDs' in vitro toxicity was assessed on A549 cells (real-time cell analysis of impedance, fluorescence microscopy) after 24 h of incubation, and we observed no changes in cell viability and morphology. CDs' in vivo toxicity was assessed on C57Bl6 mice after multiple dosages (5 mg/kg subcutaneously) for 14 days. Lethality (up to 50%) was observed in CDN19 and CD_3011 groups on different days of dosing, accompanied by toxicity signs in case of CD_3011. There were no changes in serum biochemical parameters except Urea (increased in CDF19 and CD_3011 groups), nor substantial kidney, liver, and spleen injuries. The most impactful for all organs were also CD_3011 and CDF19, causing renal tubule injury and liver blood supply violation. Thus, CDs with a surface enriched with oxygen- and nitrogen-containing functional groups might be toxic after multiple everyday dosing, without, however, significant damages of internal organs in survived animals.

3.
Environ Sci Technol ; 57(15): 6085-6094, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014236

RESUMO

Recently, secondary organic aerosols (SOAs) emerged as a predominant component of fine particulate matter. However, the pathogenic mechanism(s) of SOAs are still poorly understood. Herein, we show that chronic exposure of mice to SOAs resulted in lung inflammation and tissue destruction. Histological analyses found lung airspace enlargement associated with massive inflammatory cell recruitment predominated by macrophages. Concomitant with such cell influx, our results found changes in the levels of a series of inflammatory mediators in response to SOA. Interestingly, we observed that the expression of the genes encoding for TNF-α and IL-6 increased significantly after one month of exposure to SOAs; mediators that have been largely documented to play a role in chronic pulmonary inflammatory pathologies. Cell culture studies confirmed these in vivo findings. Of importance as well, our study indicates increased matrix metalloproteinase proteolytic activity suggesting its contribution to lung tissue inflammation and degradation. Our work represents the first in vivo study, which reports that chronic exposure to SOAs leads to lung inflammation and tissue injury. Thus, we hope that these data will foster new studies to enhance our understanding of the underlying pathogenic mechanisms of SOAs and perhaps help in the design of therapeutic strategies against SOA-mediated lung injury.


Assuntos
Aerossóis , Poluentes Atmosféricos , Exposição por Inalação , Pulmão , Pneumonia , Animais , Camundongos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Pneumonia/epidemiologia , Aerossóis e Gotículas Respiratórios
4.
Eur J Cell Biol ; 102(2): 151303, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36907024

RESUMO

Rheumatoid synovitis is infiltrated by immune cells that interact with synoviocytes, leading to the pannus formation. Inflammation or cell interaction effects are mainly evaluated with cytokine production, cell proliferation or migration. Few studies interest on cell morphology. Here, the purpose was to deepen some morphological changes of synoviocytes or immune cells under inflammatory conditions. Inflammatory cytokines, IL-17 and TNF that are largely involved in RA pathogenesis, induced a change in synoviocyte morphology, inducing a retracted cell with higher number of pseudopodia. Several morphological parameters decreased in inflammatory conditions: cell confluence, area and motility speed. The same impact on cell morphology was observed in co-culture of synoviocytes and immune cells in inflammatory/non-inflammatory conditions or with cell activation (miming the in vivo situation), affecting both cell types: synoviocytes were retracted and inversely immune cells proliferated, indicating that cell activation induced a morphological change of cells. In contrast, with RA but not control synoviocytes, cell interactions were not sufficient to affect PBMC and synoviocyte morphology. The morphological effect came only from the inflammatory environment. These findings reveal that the inflammatory environment or cell interactions induced massive changes in control synoviocytes, with cell retraction and increase of pseudopodia number, leading to better interactions with other cells. Except in the case of RA, the inflammatory environment was absolutely required for such changes.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Sinoviócitos/patologia , Citocinas/farmacologia , Leucócitos Mononucleares/patologia , Artrite Reumatoide/patologia , Proliferação de Células , Células Cultivadas , Citoesqueleto , Fibroblastos/patologia , Comunicação Celular
5.
Environ Sci Process Impacts ; 25(3): 382-388, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36789908

RESUMO

Secondary organic aerosols (SOAs) have emerged recently as a major component of fine particulate matter. Cell culture studies revealed a role for SOAs in cell oxidative stress, toxicity and inflammation and only a few studies investigated short-term SOA exposure in animal models. Here, mice were chronically exposed to naphthalene-derived SOAs for one and two months. Weight monitoring indicated a marked mass loss, especially in females, following chronic exposure to SOAs. Significantly, a cytokine antibody microarray approach revealed SOA-induced abnormal lung inflammation similar to that seen in cigarette smoke-induced chronic obstructive pulmonary disease (COPD). This in vivo study testifies to the pathogenic role of sub-chronic SOA exposure on human health.


Assuntos
Pneumonia , Aerossóis e Gotículas Respiratórios , Feminino , Camundongos , Humanos , Animais , Pneumonia/induzido quimicamente , Material Particulado/toxicidade , Redução de Peso , Estresse Oxidativo
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674544

RESUMO

Adipose tissue hypertrophy during obesity plays pleiotropic effects on health. Adipose tissue expandability depends on adipocyte size and number. In mature adipocytes, lipid accumulation as triglycerides into droplets is imbalanced by lipid uptake and lipolysis. In previous studies, we showed that adipogenesis induced by oleic acid is signed by size increase and reduction of FAT/CD36 (SR-B2) activity. The present study aims to decipher the mechanisms involved in fat mass regulation by fatty acid/FAT-CD36 signalling. Human adipose stem cells, 3T3-L1, and its 3T3-MBX subclone cell lines were used in 2D cell cultures or co-cultures to monitor in real-time experiments proliferation, differentiation, lipolysis, and/or lipid uptake and activation of FAT/CD36 signalling pathways regulated by oleic acid, during adipogenesis and/or regulation of adipocyte size. Both FABP4 uptake and its induction by fatty acid-mediated FAT/CD36-PPARG gene transcription induce accumulation of intracellular FABP4, which in turn reduces FAT/CD36, and consequently exerts a negative feedback loop on FAT/CD36 signalling in both adipocytes and their progenitors. Both adipocyte size and recruitment of new adipocytes are under the control of FABP4 stores. This study suggests that FABP4 controls fat mass homeostasis.


Assuntos
Adipócitos , Ácido Oleico , Humanos , Camundongos , Animais , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Lipólise , Adipogenia , Diferenciação Celular , Ácidos Graxos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células 3T3-L1 , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
7.
Nanoscale Res Lett ; 17(1): 127, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562892

RESUMO

Carbon-based nanomaterials are promising for a wide range of biomedical applications, i.e. drug delivery, therapy, and imaging including photoacoustic tomography, where they can serve as contrast agents, biocompatibility and biodistribution of which should be assessed before clinical setting. In this paper, localization of carbon flurooxide nanoparticles, carbon nanodots from ß-alanine, carbon nanodots from urea and citric acid and glucose-ethylenediamine nanoparticles (NPs) in organs of Wistar rats were studied by photoacoustic measurements after 24 h of their intravenous injection. 16 ns light pulse from a Q-switched Nd:YAG laser with 1064 nm wavelength was used as an excitation source. The laser-induced photoacoustic signals were recorded with a ring piezoelectric detector. Light absorption by carbon NPs resulted in noticeable enhancement of the photoacoustic amplitude in the tissues where the NPs were accumulated. The NPs were preferably accumulated in liver, kidneys and spleen, and to a lesser extent in heart and gastrocnemius muscles. Together with remarkable fluorescent properties of the studied carbon nanomaterials, their photoacoustic responses allow their application for bi-modal fluorescence-photoacoustic bio-imaging.

8.
Adipocyte ; 11(1): 510-528, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35946137

RESUMO

Metabolic disorders related to obesity are largely dependent on adipose tissue hypertrophy, which involves adipocyte hypertrophy and increased adipogenesis. Adiposize is regulated by lipid accumulation as a result of increased lipogenesis (mainly lipid uptake in mature adipocytes) and reduced lipolysis. Using realtime 2D cell culture analyses of lipid uptake, we show (1) that high glucose concentration (4.5 g/L) was required to accumulate oleic acid increasing lipid droplet size until unilocularization similar to mature adipocytes in few days, (2) oleic acid reduced Peroxisome-Proliferator Activated Receptor Gamma (PPARG) gene transcription and (3) insulin counteracted oleic acid-induced increase of lipid droplet size. Although the lipolytic activity observed in high versus low glucose (1 g/L) conditions was not altered, insulin was found to inhibit oleic acid induced gene transcription required for lipid storage such as Cell Death Inducing DFFA Like Effectors (CIDEC) and G0S2 (G0 switch gene S2), possibly through PPARA activity. Although this signalling pathway requires more detailed investigation, the results point out the differential mechanisms involved in the pro-adipogenic effect of insulin in absence versus its protective effect on adiposity in presence of oleic acid uptake.Abbreviations: AICAR, 5-Aminoimidazole-4-carboxamide-1-D-ribofuranoside; AMPK, AMP-Activated protein kinase, ASCs, adipose stem cell; ATGL, adipose triglyceride lipase; BSA, Bovine serum albumin; CEBPA, CCAAT enhancer binding protein alpha; CIDEs, Cell Death Inducing DFFA Like Effectors; dA, differentiated adipocyte; DMEM, Dulbecco's Modified Eagle's Medium; FABPs, Fatty Acid Binding Proteins; FAT/CD36, Fatty acid translocase; FCS, Foetal calf serum; FN1, fibronectin 1; FFA, free fatty acid; G0S2, G0 switch gene S2; GLUTs, Glucose transporters; GPR120, G protein-coupled receptor 120; HG, high glucose; HSL, hormone sensitive lipase; INSR, insulin receptor; LG, low glucose; OA, oleic acid; PBS, Phosphate buffer saline; PPARs, Peroxisome-Proliferator Activated Receptors; PKA, Protein kinase cyclic AMP-dependent; PKG, Protein kinase cyclic GMP dependent; PTGS2, cytochrome oxidase 2; RTCA, realtime cell analysis; TG, triglyceride.


Assuntos
Ácidos Graxos , Insulina , Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Hipertrofia/metabolismo , Insulina/metabolismo , Lipólise , Obesidade/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Proteínas Quinases/metabolismo
9.
Cancer Gene Ther ; 29(10): 1429-1438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35379907

RESUMO

Cell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration. Here, we show that loss of ERRα leads to abnormal accumulation of actin filaments that is associated with an increased level of inactive form of the actin-depolymerising factor cofilin. We further show that ERRα depletion decreases cell adhesion and results in defective FA formation and turnover. Interestingly, specific inhibition of the RhoA-ROCK-LIMK-cofilin pathway rescues the actin polymerisation defects resulting from ERRα silencing, but not cell adhesion. Instead, we found that MAP4K4 is a direct target of ERRα and down-regulation of its activity rescues cell adhesion and FA formation in the ERRα-depleted cells. Altogether, our results highlight a crucial role of ERRα in coordinating the dynamic of actin network and FAs through the independent regulation of the RhoA and MAP4K4 pathways.


Assuntos
Actinas , Adesões Focais , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Movimento Celular/fisiologia , Adesões Focais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
10.
Biochimie ; 203: 106-117, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35041857

RESUMO

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Assuntos
Diglicerídeos , Enterócitos , Ratos , Animais , Diglicerídeos/metabolismo , Enterócitos/metabolismo , Lipase/metabolismo , Óleo de Brassica napus/metabolismo , Glicerol/metabolismo , Triglicerídeos/metabolismo , Digestão , Redes e Vias Metabólicas
11.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34947519

RESUMO

Cytotoxicity of fluorescent carbon fluoroxide (CFO) nanoparticles (NPs) was studied in a label-free manner on several cancer and non-cancer cell lines. A direct cytotoxic effect of the CFO NPs was clearly observed by a suppression of cell proliferation. The real-time measurement of cell activities allowed to quantify the impact of the uptaken NPs on cell proliferation and after washout of the NPs from the cell culture medium. The results show more toxic effects of the CFO NPs on cancer than on non-cancer cell lines. The notion of NPs biocompatibility must be related to a maximum concentration value of the NPs acceptable for a given cell type. Furthermore, the cytotoxicity effects of NPs should be studied not only during their direct exposure to cells but also after their washout from the culture medium.

12.
Sci Rep ; 11(1): 21626, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732797

RESUMO

We have determined the lipid, protein and miRNA composition of skeletal muscle (SkM)-released extracellular vesicles (ELVs) from Ob/ob (OB) vs wild-type (WT) mice. The results showed that atrophic insulin-resistant OB-SkM released less ELVs than WT-SkM, highlighted by a RAB35 decrease and an increase in intramuscular cholesterol content. Proteomic analyses of OB-ELVs revealed a group of 37 proteins functionally connected, involved in lipid oxidation and with catalytic activities. OB-ELVs had modified contents for phosphatidylcholine (PC 34-4, PC 40-3 and PC 34-0), sphingomyelin (Sm d18:1/18:1) and ceramides (Cer d18:1/18:0) and were enriched in cholesterol, likely to alleviated intracellular accumulation. Surprisingly many ELV miRNAs had a nuclear addressing sequence, and targeted genes encoding proteins with nuclear activities. Interestingly, SkM-ELV miRNA did not target mitochondria. The most significant function targeted by the 7 miRNAs altered in OB-ELVs was lipid metabolism. In agreement, OB-ELVs induced lipid storage in recipient adipocytes and increased lipid up-take and fatty acid oxidation in recipient muscle cells. In addition, OB-ELVs altered insulin-sensitivity and induced atrophy in muscle cells, reproducing the phenotype of the releasing OB muscles. These data suggest for the first time, a cross-talk between muscle cells and adipocytes, through the SkM-ELV route, in favor of adipose tissue expansion.


Assuntos
Homeostase , Resistência à Insulina , Lipídeos/análise , MicroRNAs/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Tecido Adiposo , Animais , Exossomos/genética , Exossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Proteoma/análise , Proteoma/metabolismo
13.
J Clin Med ; 10(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34640590

RESUMO

Mortality in the setting of septic shock varies between 20% and 100%. Refractory septic shock leads to early circulatory failure and carries the worst prognosis. The pathophysiology is poorly understood despite studies of the microcirculatory defects and the immuno-paralysis. The acute circulatory distress is treated with volume expansion, administration of vasopressors (usually noradrenaline: NA), and inotropes. Ventilation and anti-infectious strategy shall not be discussed here. When circulation is considered, the literature is segregated between interventions directed to the systemic circulation vs. interventions directed to the micro-circulation. Our thesis is that, after stabilization of the acute cardioventilatory distress, the prolonged sympathetic hyperactivity is detrimental in the setting of septic shock. Our hypothesis is that the sympathetic hyperactivity observed in septic shock being normalized towards baseline activity will improve the microcirculation by recoupling the capillaries and the systemic circulation. Therefore, counterintuitively, antihypertensive agents such as beta-blockers or alpha-2 adrenergic agonists (clonidine, dexmedetomidine) are useful. They would reduce the noradrenaline requirements. Adjuncts (vitamins, steroids, NO donors/inhibitors, etc.) proposed to normalize the sepsis-evoked vasodilation are not reviewed. This itemized approach (systemic vs. microcirculation) requires physiological and epidemiological studies to look for reduced mortality.

14.
Sensors (Basel) ; 21(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34372238

RESUMO

The measuring of nanoparticle toxicity faces an important limitation since it is based on metrics exposure, the concentration at which cells are exposed instead the true concentration inside the cells. In vitro studies of nanomaterials would benefit from the direct measuring of the true intracellular dose of nanoparticles. The objective of the present study was to state whether the intracellular detection of nanodiamonds is possible by measuring the refractive index. Based on optical diffraction tomography of treated live cells, the results show that unlabeled nanoparticles can be detected and localized inside cells. The results were confirmed by fluorescence measurements. Optical diffraction tomography paves the way to measuring the true intracellular concentrations and the localization of nanoparticles which will improve the dose-response paradigm of pharmacology and toxicology in the field of nanomaterials.


Assuntos
Nanodiamantes , Nanopartículas , Nanopartículas/toxicidade , Refratometria
15.
Brain Commun ; 3(2): fcab064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937770

RESUMO

Atherosclerosis is a chronic systemic inflammatory disease, inducing cardiovascular and cerebrovascular acute events. A role of neuroinflammation is suspected, but not yet investigated in the gyrencephalic brain and the related activity at blood-brain interfaces is unknown. A non-human primate model of advanced atherosclerosis was first established using longitudinal blood samples, multimodal imaging and gene analysis in aged animals. Non-human primate carotid lesions were compared with human carotid endarterectomy samples. During the whole-body imaging session, imaging of neuroinflammation and choroid plexus function was performed. Advanced plaques were present in multiple sites, premature deaths occurred and downstream lesions (myocardial fibrosis, lacunar stroke) were present in this model. Vascular lesions were similar to in humans: high plaque activity on PET and MRI imaging and systemic inflammation (high plasma C-reactive protein levels: 42 ± 14 µg/ml). We also found the same gene association (metabolic, inflammatory and anti-inflammatory markers) as in patients with similar histological features. Metabolic imaging localized abnormal brain glucose metabolism in the frontal cortex. It corresponded to cortical neuro-inflammation (PET imaging) that correlated with C-reactive protein level. Multimodal imaging also revealed pronounced choroid plexus function impairment in aging atherosclerotic non-human primates. In conclusion, multimodal whole-body inflammation exploration at the vascular level and blood-brain interfaces identified high-risk aging atherosclerosis. These results open the way for systemic and central inflammation targeting in atherosclerosis in the new era of immunotherapy.

16.
Life (Basel) ; 11(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917485

RESUMO

In 2018, seven million people died prematurely due to exposure to pollution. Polycyclic aromatic hydrocarbons (PAHs) are a significant source of secondary organic aerosol (SOA) in urban areas. We investigated the toxic effects of by-products of naphthalene SOA on lung cells. These by-products were 1,4-naphthoquinone (1,4-NQ), 2-hydroxy-1,4-naphthoquinone (2-OH-NQ), phthalic acid (PA) and phthaldialdehyde (OPA). Two different assessment methodologies were used to monitor the toxic effects: real-time cell analysis (RTCA) and the Holomonitor, a quantitative phase contrast microscope. The chemicals were tested in concentrations of 12.5 to 100 µM for 1,4-NQ and 1 to 10 mM for 2-OH-NQ, PA and OPA. We found that 1,4-NQ is toxic to cells from 25 to 100 µM (EC50: 38.7 µM ± 5.2); 2-OH-NQ is toxic from 1 to 10mM (EC50: 5.3 mM ± 0.6); PA is toxic from 5 to 10 mM (EC50: 5.2 mM ± 0.3) and OPA is toxic from 2.5 to 10 mM (EC50: 4.2 mM ± 0.5). Only 1,4-NQ and OPA affected cell parameters (migration, motility, motility speed and optical volume). Furthermore, 1,4-NQ is the most toxic by-product of naphthalene, with an EC50 value that was one hundred times higher than those of the other compounds. RTCA and Holomonitor analysis showed a complementarity when studying the toxicity induced by chemicals.

17.
Mol Ther Methods Clin Dev ; 18: 880-892, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32953937

RESUMO

We have determined whether orange juice-derived nanovesicles (ONVs) could be used for the treatment of obesity-associated intestinal complications. ONVs were characterized by lipidomic, metabolomic, electron microscopy. In vitro, intestinal barriers (IBs = Caco-2+HT-29-MTX) were treated with ONVs and co-cultured with adipocytes to monitor IB fat release. In vivo, obesity was induced with a high-fat, high-sucrose diet (HFHSD mice) for 12 weeks. Then, half of HFHSD mice were gavaged with ONVs. One-month ONV treatment did not modify HFHSD-induced insulin resistance but reversed diet-induced gut modifications. In the jejunum, ONVs increased villi size, reduced triglyceride content, and modulated mRNA levels of genes involved in immune response (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß), barrier permeability (CLDN1, OCLN, ZO1), fat absorption, and chylomicron release. ONVs targeted microsomal triglyceride transfer protein (MTP) and angiopoietin-like protein-4 (ANGPTL4), two therapeutic targets to reduce plasma lipids and inflammation in gastrointestinal diseases. Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver. Therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD. As ONVs concentrated amino acids and bioactive lipids versus orange juice, which are deficient in obese patients, the use of ONVs as a dietary supplement could bring physiological relevant compounds in the jejunum to accelerate the restoration of intestinal functions during weight loss in obese patients.

18.
ACS Omega ; 5(11): 5638-5642, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226839

RESUMO

A special electronic tongue system based on photoelectric measurements on Si-Si/SiN X sensitive structures is reported. The sensing approach is based on measuring of minority carrier lifetime in silicon-based substrates using microwave-detected photoconductance decay. This inexpensive and environmentally friendly combinatorial electronic sensing platform is able to create characteristic electronic fingerprints of liquids, detect, and recognize them. In particular, an application of the optoelectronic tongue for recognition of vegetable oils and their mixtures is described.

20.
Adipocyte ; 8(1): 83-97, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30905315

RESUMO

Adipose tissue function in the regulation of lipemia is highly dependent on intestinal absorption of nutrients. Therefore the aim of the present study was the development and validation of an in vitro multiculture model allowing to measure intestinal absorption using adipocytes as lipid sensors. We previously described (1) novel methods to study oleic acid induction of adipogenesis and lipogenesis and (2) a functional reconstituted intestinal barrier using human cell lines Caco-2/HT29-MTX (9:1). In the present study we develop a co-culture model with either adipocytes or hepatocytes as sensors for intestinal lipid absorption. This model was validated using oleic acid (OA) pre-absorbed onto the intestinal barrier. Optimized experimental conditions were obtained with partially differentiated 3T3L1-MBX adipocytes sensing up to 5 µM OA in solution or 40 µM OA pre-absorbed by Caco2/HT29-MTX intestinal barriers. Metabolism including glycemia and insulinemia greatly influenced the ability to  TG accumulation in adipocytes. By comparison AML12 hepatocytes found less sensitive to OA (up to 1 µM). The present study demonstrates a much better functionality for fatty acid uptake and release in Caco2/HT29-MTX versus Caco-2 intestinal barriers. Taken together these results open new opportunities to study in vitro lipid transfer between intestinal barriers and either adipocytes or hepatocytes. Abbreviations: BSA: Bovine serum albumin; CIDEs: Cell Death Inducing DFFA Like Effectors; DMEM, Dulbecco's Modified Eagle's Medium; FABPs: Fatty Acid Binding Proteins; FAT/CD36: Fatty acid translocase; FCS: Fetal calf serum; GLP2: Glucagon-like peptide-2; NAFLD: Nonalcoholic fatty liver disease; OA: oleic acid; PBS: Phosphate buffer saline; PPARs: Peroxisome-Proliferator Activated Receptors; RTCA: realtime cell analysis; TG: triglyceride.


Assuntos
Adipócitos/fisiologia , Absorção Intestinal/fisiologia , Ácido Oleico/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Transporte Biológico/fisiologia , Células CACO-2 , Diferenciação Celular , Técnicas de Cocultura , Proteínas de Ligação a Ácido Graxo/metabolismo , Células HT29 , Hepatócitos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Intestinos/fisiologia , Lipídeos/fisiologia , Lipogênese/fisiologia , Camundongos , Hepatopatia Gordurosa não Alcoólica , Transporte Proteico/fisiologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...