Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677565

RESUMO

Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by structural analogues, such as BPAF, BPAP, BPB, BPF, BPP, BPS, and BPZ. However, these alternatives are under surveillance for potential endocrine disruption, particularly during the critical period of fetal development. Despite their structural analogies, these BPs differ greatly in their placental transport efficiency. For predicting the fetal exposure of this important class of emerging contaminants, quantitative structure-activity relationship (QSAR) studies were developed to model and predict the placental clearance indices (CI). The most usual input parameters were molecular descriptors obtained by modelling, but for bisphenols (BPs) with structural similarities or heteroatoms such as sulfur, these descriptors do not contrast greatly. This study evaluated and compared the capacity of QSAR models based either on molecular or chromatographic descriptors or a combination of both to predict the placental passage of BPs. These chromatographic descriptors include both the retention mechanism and the peak shape on columns that reflect specific molecular interactions between solute and stationary and mobile phases and are characteristic of the molecular structure of BPs. The chromatographic peak shape such as the asymmetry and tailing factors had more influence on predicting the placental passage than the usual retention parameters. Furthermore, the QSAR model, having the best prediction capacity, was obtained with the chromatographic descriptors alone and met the criteria of internal and cross validation. These QSAR models are crucial for predicting the fetal exposure of this important class of emerging contaminants.


Assuntos
Placenta , Relação Quantitativa Estrutura-Atividade , Gravidez , Humanos , Feminino , Compostos Benzidrílicos , Fenóis
2.
Environ Int ; 171: 107722, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584424

RESUMO

Due to the restrictions of its use, Bisphenol A (BPA) has been replaced by many structurally related bisphenols (BPs) in consumer products. The endocrine disrupting potential similar to that of BPA has been described for several bisphenols, there is therefore an urgent need of toxicokinetic (TK) data for these emerging BPs in order to evaluate if their internal exposure could increase the risk of endocrine disruption. We investigated TK behaviors of eleven BPA substitutes (BPS, BPAF, BPB, BPF, BPM, BPZ, 3-3BPA, BP4-4, BPAP, BPP, and BPFL) by intravenous and oral administrations of mixtures of them to piglets and serial collection of blood over 72 h and urine over 24 h, to evaluate their disposition. Data were analyzed using nonlinear mixed-effects modeling and a comparison was made with TK predicted by the generic model HTTK package. The low urinary excretion of some BPs, in particular BPM, BPP and BPFL, is an important aspect to consider in predicting human exposure based on urine biomonitoring. Despite their structural similarities, for the same oral dose, all BPA analogues investigated showed a higher systemic exposure (area under the plasma concentration-time curve (AUC) of the unconjugated Bisphenol) than BPA (2 to 4 fold for 3-3BPA, BPAF, BPB and BPZ, 7-20 fold for BP4-4, BPAP, BPP, BPFL, BPF and BPM and 150 fold for BPS) due mainly to a considerable variation of oral bioavailability (proportion of BP administered by oral route that attains the systemic circulation unchanged). Given similarities in the digestive tract between pigs and humans, our TK data suggest that replacing BPA with some of its alternatives, particularly BPS, will likely lead to higher internal exposure to potential endocrine disruptive compounds. These findings are crucial for evaluating the risk of human exposure to these emerging BPs.


Assuntos
Compostos Benzidrílicos , Monitoramento Biológico , Suínos , Humanos , Animais , Toxicocinética , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Administração Oral
3.
Chemosphere ; 276: 130213, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088095

RESUMO

Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by a variety of alternatives in consumer products. Due to their structural similarity to BPA, these alternatives are under surveillance, however, for potential endocrine disruption. Understanding the materno-fetal transfer of these BPA-related alternatives across the placenta is therefore crucial to assess prenatal exposure risks. The objective of the study was to assess and compare the placental transfer of a set of 15 selected bisphenols (BPs) (BP 4-4, BPA, BPAF, BPAP, 3-3 BPA, BPB, BPBP, BPC, BPE, BPF, BPFL, BPM, BPP, BPS and BPZ) using the ex vivo human placental perfusion model. The UHPLC-MS/MS method for simultaneous quantification of these BPs in perfusion media, within a concentration range of 0.003-5 µM, was able to measure placenta transfer rates as low as 0.6%-4%. Despite their structural similarities, these BPs differed greatly in placental transport efficiency. The placental transfer rates of BP4-4, BPAP, BPE, BPF, 3-3BPA, BPB, BPA were similar to that of antipyrine, indicating that their main transport mechanism was passive diffusion. By contrast, the placental transfer rates of BPFL and BPS were very limited, and intermediate for BPBP, BPZ, BPC, BPM, BPP and BPAF, suggesting weak diffusional permeability and/or that their passage might involve efflux transport. These placental transfer data will be particularly useful for predicting the fetal exposure of this important class of emerging contaminants.


Assuntos
Placenta , Espectrometria de Massas em Tandem , Compostos Benzidrílicos , Feminino , Humanos , Perfusão , Fenóis , Gravidez
4.
Toxicol Appl Pharmacol ; 386: 114845, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786412

RESUMO

Previous data obtained in piglets suggested that despite structural analogy with Bisphenol A (BPA), Bisphenol S (BPS) elimination may proceed more slowly, resulting in a much higher systemic exposure to unconjugated BPS than to BPA. Interspecies allometric scaling was applied to predict the toxicokinetic (TK) parameters of BPS, namely plasma clearance in humans from values obtained in animals, and thus contribute to assessment of the human internal exposure to BPS. Allometric scaling was performed using mean BPS plasma clearance values measured in rats after intravenous administration of 5 mg BPS /kg body weight (BW) and those previously obtained in piglets and sheep using identical IV BPS dosing and analytical procedures. The BPS plasma clearance, evaluated at 0.92 L/kg.h in rats, was proportional to species body weight, enabling the prediction of human BPS plasma clearance by extrapolating to a BW of 70 kg. The estimated BPS plasma clearance in humans was thus 0.92 L/min (0.79 L/kg.h), i.e. about two times lower than the previously estimated BPA clearance (1.79 L/min). By increasing systemic exposure to the active moiety of an environmental estrogenic chemical, this less efficient clearance of BPS in humans, as compared with BPA, might worsen the harmful consequences of replacing BPA by BPS.


Assuntos
Fenóis/farmacocinética , Sulfonas/farmacocinética , Animais , Feminino , Humanos , Taxa de Depuração Metabólica , Fenóis/sangue , Fenóis/toxicidade , Ratos , Ratos Wistar , Ovinos , Sulfonas/sangue , Sulfonas/toxicidade , Suínos
5.
Environ Health Perspect ; 127(7): 77005, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31313948

RESUMO

BACKGROUND: Given its hormonal activity, bisphenol S (BPS) as a substitute for bisphenol A (BPA) could actually increase the risk of endocrine disruption if its toxicokinetic (TK) properties, namely its oral availability and systemic persistency, were higher than those of BPA. OBJECTIVES: The TK behavior of BPA and BPS was investigated by administering the two compounds by intravenous and oral routes in piglet, a known valid model for investigating oral TK. METHODS: Experiments were conducted in piglets to evaluate the kinetics of BPA, BPS, and their glucuronoconjugated metabolites in plasma and urine after intravenous administration of BPA, BPS, and BPS glucuronide (BPSG) and gavage administration of BPA and BPS. A population semiphysiologically based TK model describing the disposition of BPA and BPS and their glucuronides was built from these data to estimate the key TK parameters that drive the internal exposure to active compounds. RESULTS: The data indicated that almost all the BPS oral dose was absorbed and transported into the liver where only 41% of BPS was glucuronidated, leading to a systemic bioavailability of 57.4%. In contrast, only 77% of the oral dose of BPA was absorbed and underwent an extensive first-pass glucuronidation either in the gut (44%) or in the liver (53%), thus accounting for the low systemic bioavailability of BPA (0.50%). Due to the higher systemic availability of BPS, in comparison with BPA, and its lower plasma clearance (3.5 times lower), the oral BPS systemic exposure was on average about 250 times higher than for BPA for an equal oral molar dose of the two compounds. CONCLUSION: Given the similar digestive tracts of pigs and humans, our results suggest that replacing BPA with BPS will likely lead to increased internal exposure to an endocrine-active compound that would be of concern for human health. https://doi.org/10.1289/EHP4599.


Assuntos
Compostos Benzidrílicos/farmacocinética , Poluentes Ambientais/farmacocinética , Fenóis/farmacocinética , Sulfonas/farmacocinética , Sus scrofa/metabolismo , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Feminino , Masculino , Toxicocinética
6.
Chemosphere ; 221: 471-478, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30654261

RESUMO

The aim of our study was to evaluate the bidirectional transfer of Bisphenol S (BPS) and its main metabolite, BPS Glucuronide (BPSG), using the model of perfused human placenta and to compare the obtained values with those of Bisphenol A (BPA) and BPA Glucuronide. Fourteen placentas at term were perfused in an open dual circuit with deuterated BPS (1 and 5 µM) and non-labelled BPSG (2.5 µM) and a freely diffusing marker antipyrine (800 ng/ml) in the presence of albumin (25 mg/ml). In a second experiment, the potential role of P-glycoprotein in the active efflux of BPS across the placental barrier was studied using the well-established P-glycoprotein inhibitor, PSC833 (2 and 4 µM). Placental transfer of BPS was much lower than that of BPA in both directions. The placental clearance index of BPS in the materno-fetal direction was three times lower than in the opposite direction, strongly suggesting some active efflux transport. However, our results show that P-glycoprotein is not involved in limiting the materno-fetal transfer of BPS. Placental transfer of BPSG in the fetal compartment was almost non-existent indicating that, in the fetal compartment, BPSG originates mainly from feto-placental metabolism. The feto-maternal clearance index for BPSG was 20-fold higher than the materno-fetal index. We conclude that the blood-placental barrier is much more efficient in limiting fetal exposure to BPS than to BPA, indicating that the placenta has a crucial role in protecting the human fetus from BPS exposure.


Assuntos
Compostos Benzidrílicos/metabolismo , Feto/metabolismo , Troca Materno-Fetal/fisiologia , Fenóis/metabolismo , Placenta/metabolismo , Sulfonas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Feminino , Glucuronídeos , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...