Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0283334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952538

RESUMO

An in-depth analysis of the epidemiological patterns of TB/HIV co-infection is essential since it helps to target high-risk areas with effective control measures. The main objective of this study was to assess the spatial clustering of TB/HIV co-infection prevalence in Ethiopia for the year 2018 using district-level aggregated TB and HIV data obtained from the Ethiopian Federal Ministry of Health. The global Moran's index, Getis-Ord [Formula: see text] local statistic, and Bayesian spatial modeling techniques were applied to analyse the data. The result of the study shows that TB among people living with HIV (PLHIV) and HIV among TB patients prevalence were geographically heterogeneous. The highest prevalence of TB among PLHIV in 2018 was reported in the Gambella region (1.44%). The overall prevalence of TB among PLHIV in Ethiopia in the same year was 0.38% while the prevalence of HIV among TB patients was 6.88%. Both district-level prevalences of HIV among TB patients and TB among PLHIV were positively spatially autocorrelated, but the latter was not statistically significant. The local indicators of spatial analysis using the Getis-Ord statistic also identified hot-spots districts for both types of TB/HIV co-infection data. The results of Bayesian spatial logistic regression with spatially structured and unstructured random effects using the Besag, York, and Mollié prior showed that not all the heterogeneities in the prevalence of HIV among TB patients and TB among PLHIV were explained by the spatially structured random effects. This study expanded knowledge about the spatial clustering of TB among PLHIV and HIV among TB patients in Ethiopia at the district level in 2018. The findings provide information to health policymakers in the country to plan geographically targeted and integrated interventions to jointly control TB and HIV.


Assuntos
Coinfecção , Infecções por HIV , Tuberculose Latente , Tuberculose , Humanos , Etiópia/epidemiologia , Coinfecção/epidemiologia , Teorema de Bayes , Tuberculose/complicações , Tuberculose/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Análise Espacial
2.
AIDS Res Treat ; 2023: 5191252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684410

RESUMO

Background: Tuberculosis (TB) is a preventable and treatable disease but it is the leading cause of death among people living with HIV (PLHIV). In addition, the emergence of the HIV pandemic has also had a major impact on TB incidence rates. There are studies in spatial patterns of TB and HIV separately in Ethiopia; there is, however, no information on spatial patterns of TB-HIV coinfection in the country at the districts level at least using yearly data. This paper, therefore, aimed at determining the spatial clustering of TB-HIV coinfection prevalence rates in the country at the districts level on an annual basis over a four-year period, 2015-2018. Methods: District-level aggregated data on the number of TB-HIV infections were obtained from the Ethiopian Federal Ministry of Health for 2015 to 2018. The univariate and bivariate global Moran's index, Getis-Ord G i ∗ local statistic, a chi-square test, and a modified t-test statistic for Spearman's correlation coefficient were used to evaluate the spatial clustering and spatial heterogeneity of TB among PLHIV and HIV among TB patients prevalence rates. Results: The district-level prevalence rate of HIV among TB patients was positively and significantly spatially autocorrelated with global Moran's I values range between 0.021 and 0.134 (p value <0.001); however, the prevalence of TB among PLHIV was significant only for 2015 and 2017 (p value <0.001). Spearman's correlation also shows there was a strong positive association between the two prevalence rates over the study period. The local indicators of spatial analysis using the Getis-Ord statistic revealed that hot-spots for TB among PLHIV and HIV among TB patients have appeared in districts of various regions and the two city administrations in the country over the study period; however, the geographical distribution of hotspots varies over the study period. Similar trends were also observed for the cold-spots except for 2017 and 2018 where there were no cold-spots for TB among PLHIV. Conclusions: The study presents detailed knowledge about the spatial clustering of TB-HIV coinfection in Ethiopia at the districts level, and the results could provide information for planning coordinated district-specific interventions to jointly control both diseases in Ethiopia.

3.
Diseases ; 10(4)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36412600

RESUMO

Background: Tuberculosis (TB) and HIV are epidemiologically associated, and their co-dynamics suggest that the two diseases are directly related at the population level and within the host. However, there is no or little information on the joint spatial patterns of the two diseases in Ethiopia. The main objective of the current study was to assess the spatial co-clustering of TB and HIV cases simultaneously in Ethiopia at the district level. Methods: District-level aggregated data collected from the national Health Management Information System (HMIS) for the years 2015 to 2018 on the number of TB cases enrolled in directly observed therapy, short course (DOTS) who were tested for HIV and the number of HIV patients enrolled in HIV care who were screened for TB during their last visit to health care facilities were used in this study. The univariate and bivariate global and local Moran's I indices were applied to assess the spatial clustering of TB and HIV separately and jointly. Results: The results of this study show that the two diseases were significantly (p-value <0.001) spatially autocorrelated at the district level with minimum and maximum global Moran's I values of 0.407 and 0.432 for TB, 0.102 and 0.247 for HIV, and 0.152 and 0.251 for joint TB/HIV. The district-level TB/HIV spatial co-clustering patterns in Ethiopia in most cases overlapped with the hot spots of TB and HIV. The TB/HIV hot-spot clusters may appear due to the observed high TB and HIV prevalence rates in the hot-spot districts. Our results also show that there were low-low TB/HIV co-clusters or cold spots in most of the Afar and Somali regions, which consistently appeared for the period 2015−2018. This may be due to very low notifications of both diseases in the regions. Conclusions: This study expanded knowledge about TB and HIV co-clustering in Ethiopia at the district level. The findings provide information to health policymakers in the country to plan geographically targeted and integrated interventions to jointly control TB and HIV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...