Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 106(8): 2750-2762, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29206329

RESUMO

The aim of this study was set-up and test of gelatin and carbon nanotubes scaffolds. Gelatin-based (5%) genipin cross-linked (0.2%) scaffolds embedding single-walled carbon nanotubes (SWCNTs, 0.3, 0.5, 0.7, 0.9, and 1.3% w/w) were prepared and mechanically/electrically characterized. For biological evaluation, H9c2 cell line was cultured for 10 days. Cytotoxicity, cell growth and differentiation, immunohistochemistry, and real-time PCR analysis were performed. Myoblast and cardiac differentiation were obtained by serum reduction to 1% (C1% ) and stimulation with 50 nM all trans-retinoic acid (CRA ), respectively. Immunohistochemistry showed elongated myotubes in C1% while round and multinucleated cells in CRA with also a significantly increased expression of natriuretic peptides (NP) and ET-1 receptors in parallel with a decreased ET-1. On scaffolds, cell viability was similar for Gel-SWCNT0.3%/0.9% ; NP and ET systems expression decreased in both concentrations with respect to control and CX-43, mainly due to a lacking of complete differentiation in cardiac phenotype during that time. Although further analyses on novel biomaterials are necessary, these results represent a useful starting point to develop new biomaterial-based scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2750-2762, 2018.


Assuntos
Diferenciação Celular , Gelatina/química , Coração/fisiologia , Mioblastos Cardíacos/metabolismo , Nanotubos de Carbono/química , Regeneração , Alicerces Teciduais/química , Animais , Linhagem Celular , Regulação da Expressão Gênica , Teste de Materiais , Proteínas Musculares/biossíntese , Mioblastos Cardíacos/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...