Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(720): eadf3357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910599

RESUMO

The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Receptores CXCR4/metabolismo , Aterosclerose/genética , Placa Aterosclerótica/patologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento Celular
2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175466

RESUMO

Cardiovascular diseases (CVDs), such as ischemic heart disease and stroke, are recognized as major causes of deaths worldwide [...].


Assuntos
Doenças Cardiovasculares , Isquemia Miocárdica , Acidente Vascular Cerebral , Humanos , Receptores Acoplados a Proteínas G
3.
Basic Res Cardiol ; 117(1): 30, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674847

RESUMO

Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.


Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores CXCR , Animais , Aterosclerose/metabolismo , Adesão Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores CXCR/metabolismo , Fator de Transcrição RelA/metabolismo
4.
J Hepatol ; 76(2): 332-342, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571050

RESUMO

BACKGROUND & AIMS: Rifaximin-α is efficacious for the prevention of recurrent hepatic encephalopathy (HE), but its mechanism of action remains unclear. We postulated that rifaximin-α reduces gut microbiota-derived endotoxemia and systemic inflammation, a known driver of HE. METHODS: In a placebo-controlled, double-blind, mechanistic study, 38 patients with cirrhosis and HE were randomised 1:1 to receive either rifaximin-α (550 mg BID) or placebo for 90 days. PRIMARY OUTCOME: 50% reduction in neutrophil oxidative burst (OB) at 30 days. SECONDARY OUTCOMES: changes in psychometric hepatic encephalopathy score (PHES) and neurocognitive functioning, shotgun metagenomic sequencing of saliva and faeces, plasma and faecal metabolic profiling, whole blood bacterial DNA quantification, neutrophil toll-like receptor (TLR)-2/4/9 expression and plasma/faecal cytokine analysis. RESULTS: Patients were well-matched: median MELD (11 rifaximin-α vs. 10 placebo). Rifaximin-α did not lead to a 50% reduction in spontaneous neutrophil OB at 30 days compared to baseline (p = 0.48). However, HE grade normalised (p = 0.014) and PHES improved (p = 0.009) after 30 days on rifaximin-α. Rifaximin-α reduced circulating neutrophil TLR-4 expression on day 30 (p = 0.021) and plasma tumour necrosis factor-α (TNF-α) (p <0.001). Rifaximin-α suppressed oralisation of the gut, reducing levels of mucin-degrading sialidase-rich species, Streptococcus spp, Veillonella atypica and parvula, Akkermansia and Hungatella. Rifaximin-α promoted a TNF-α- and interleukin-17E-enriched intestinal microenvironment, augmenting antibacterial responses to invading pathobionts and promoting gut barrier repair. Those on rifaximin-α were less likely to develop infection (odds ratio 0.21; 95% CI 0.05-0.96). CONCLUSION: Rifaximin-α led to resolution of overt and covert HE, reduced the likelihood of infection, reduced oralisation of the gut and attenuated systemic inflammation. Rifaximin-α plays a role in gut barrier repair, which could be the mechanism by which it ameliorates bacterial translocation and systemic endotoxemia in cirrhosis. CLINICAL TRIAL NUMBER: ClinicalTrials.gov NCT02019784. LAY SUMMARY: In this clinical trial, we examined the underlying mechanism of action of an antibiotic called rifaximin-α which has been shown to be an effective treatment for a complication of chronic liver disease which effects the brain (termed encephalopathy). We show that rifaximin-α suppresses gut bacteria that translocate from the mouth to the intestine and cause the intestinal wall to become leaky by breaking down the protective mucus barrier. This suppression resolves encephalopathy and reduces inflammation in the blood, preventing the development of infection.


Assuntos
Encefalopatia Hepática/tratamento farmacológico , Inflamação/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Mucinas/metabolismo , Rifaximina/farmacologia , Adulto , Idoso , Método Duplo-Cego , Feminino , Fármacos Gastrointestinais/metabolismo , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Encefalopatia Hepática/fisiopatologia , Humanos , Inflamação/epidemiologia , Inflamação/prevenção & controle , Cirrose Hepática/epidemiologia , Cirrose Hepática/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mucinas/efeitos dos fármacos , Ontário/epidemiologia , Placebos , Rifaximina/metabolismo , Rifaximina/uso terapêutico
5.
Front Pharmacol ; 12: 753727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803695

RESUMO

Objective: Pulmonary hypertension (PH) associated with hypoxia and lung disease (Group 3) is the second most common form of PH and associated with increased morbidity and mortality. This study was aimed to identify hypoxia induced metabolism associated genes (MAGs) for better understanding of hypoxic PH. Methods: Rat pulmonary arterial smooth muscle cells (PASMCs) were isolated and cultured in normoxic or hypoxic condition for 24 h. Cells were harvested for liquid chromatography-mass spectrometry analysis. Functional annotation of distinguishing metabolites was performed using Metaboanalyst. Top 10 enriched metabolite sets were selected for the identification of metabolism associated genes (MAGs) with a relevance score >8 in Genecards. Transcriptomic data from lungs of hypoxic PH in mice/rats or of PH patients were accessed from Gene Expression Omnibus (GEO) database or open-access online platform. Connectivity Map analysis was performed to identify potential compounds to reverse the metabolism associated gene profile under hypoxia stress. The construction and module analysis of the protein-protein interaction (PPI) network was performed. Hub genes were then identified and used to generate LASSO model to determine its accuracy to predict occurrence of PH. Results: A total of 36 altered metabolites and 1,259 unique MAGs were identified in rat PASMCs under hypoxia. 38 differentially expressed MAGs in mouse lungs of hypoxic PH were revealed, with enrichment in multi-pathways including regulation of glucose metabolic process, which might be reversed by drugs such as blebbistatin. 5 differentially expressed MAGs were displayed in SMCs of Sugen 5416/hypoxia induced PH rats at the single cell resolution. Furthermore, 6 hub genes (Cat, Ephx1, Gpx3, Gstm4, Gstm5, and Gsto1) out of 42 unique hypoxia induced MAGs were identified. Higher Cat, Ephx1 and lower Gsto1 were displayed in mouse lungs under hypoxia (all p < 0.05), in consistent with the alteration in lungs of PH patients. The hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.90). Conclusion: Our findings revealed six hypoxia-induced metabolism associated hub genes, and shed some light on the molecular mechanism and therapeutic targets in hypoxic PH.

6.
Sci Rep ; 11(1): 10409, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001955

RESUMO

The calcium sensing receptor (CaSR) is a G-protein coupled receptor that especially plays an important role in the sensing of extracellular calcium to maintain its homeostasis. Several in-vitro studies demonstrated that CaSR plays a role in adipose tissue metabolism and inflammation, resulting in systemic inflammation and contributing to atherosclerosis development. The aim of this study was to investigate whether adipocyte CaSR plays a role in adipose tissue inflammation in-vivo and atherosclerosis development. By using a newly established conditional mature adipocyte specific CaSR deficient mouse on a hyperlipidemic and atherosclerosis prone Apoe-/- background it could be shown that CaSR deficiency in adipocytes does neither contribute to initiation nor to progression of atherosclerotic plaques as judged by the unchanged lesion size or composition. Additionally, CaSR deficiency did not influence gonadal visceral adipose tissue (vAT) inflammation in-vivo, although a small decrease in gonadal visceral adipose cholesterol content could be observed. In conclusion, adipocyte CaSR seems not to be involved in vAT inflammation in-vivo and does not influence atherosclerosis development in hyperlipidemic Apoe-/- mice.


Assuntos
Adipócitos/metabolismo , Hiperlipidemias/complicações , Gordura Intra-Abdominal/patologia , Placa Aterosclerótica/imunologia , Receptores de Detecção de Cálcio/deficiência , Animais , Modelos Animais de Doenças , Humanos , Hiperlipidemias/genética , Hiperlipidemias/imunologia , Inflamação/imunologia , Inflamação/patologia , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de Detecção de Cálcio/genética
7.
Biomedicines ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917642

RESUMO

Dysfunctional adipose tissue (AT) may contribute to the pathology of several metabolic diseases through altered lipid metabolism, insulin resistance, and inflammation. Atypical chemokine receptor 3 (ACKR3) expression was shown to increase in AT during obesity, and its ubiquitous elimination caused hyperlipidemia in mice. Although these findings point towards a role of ACKR3 in the regulation of lipid levels, the role of adipocyte-specific ACKR3 has not yet been studied exclusively in this context. In this study, we established adipocyte- and hepatocyte-specific knockouts of Ackr3 in ApoE-deficient mice in order to determine its impact on lipid levels under hyperlipidemic conditions. We show for the first time that adipocyte-specific deletion of Ackr3 results in reduced AT triglyceride and cholesterol content in ApoE-deficient mice, which coincides with increased peroxisome proliferator-activated receptor-γ (PPAR-γ) and increased Angptl4 expression. The role of adipocyte ACKR3 in lipid handling seems to be tissue-specific as hepatocyte ACKR3 deficiency did not demonstrate comparable effects. In summary, adipocyte-specific ACKR3 seems to regulate AT lipid levels in hyperlipidemic Apoe-/- mice, which may therefore be a significant determinant of AT health. Further studies are needed to explore the potential systemic or metabolic effects that adipocyte ACKR3 might have in associated disease models.

8.
Cells ; 10(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503867

RESUMO

Atherosclerosis is a long-term, chronic inflammatory disease of the vessel wall leading to the formation of occlusive or rupture-prone lesions in large arteries. Complications of atherosclerosis can become severe and lead to cardiovascular diseases (CVD) with lethal consequences. During the last three decades, chemokines and their receptors earned great attention in the research of atherosclerosis as they play a key role in development and progression of atherosclerotic lesions. They orchestrate activation, recruitment, and infiltration of immune cells and subsequent phenotypic changes, e.g., increased uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, promoting the development of foam cells, a key feature developing plaques. In addition, chemokines and their receptors maintain homing of adaptive immune cells but also drive pro-atherosclerotic leukocyte responses. Recently, specific targeting, e.g., by applying cell specific knock out models have shed new light on their functions in chronic vascular inflammation. This article reviews recent findings on the role of immunomodulatory chemokines in the development of atherosclerosis and their potential for targeting.


Assuntos
Aterosclerose/metabolismo , Quimiocinas/metabolismo , Mediadores da Inflamação/metabolismo , Animais , Humanos , Modelos Biológicos , Receptores de Quimiocinas/metabolismo
10.
Thromb Haemost ; 120(12): 1629-1641, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124029

RESUMO

The global coronavirus disease 2019 (COVID-19) pandemic has deranged the recent history of humankind, afflicting more than 27 million individuals to date. While the majority of COVID-19 patients recuperate, a considerable number of patients develop severe complications. Bilateral pneumonia constitutes the hallmark of severe COVID-19 disease but an involvement of other organ systems, namely the cardiovascular system, kidneys, liver, and central nervous system, occurs in at least half of the fatal COVID-19 cases. Besides respiratory failure requiring ventilation, patients with severe COVID-19 often display manifestations of systemic inflammation and thrombosis as well as diffuse microvascular injury observed postmortem. In this review, we survey the mechanisms that may explain how viral entry and activation of endothelial cells by severe acute respiratory syndrome coronavirus 2 can give rise to a series of events including systemic inflammation, thrombosis, and microvascular dysfunction. This pathophysiological scenario may be particularly harmful in patients with overt cardiovascular disease and may drive the fatal aspects of COVID-19. We further shed light on the role of the renin-angiotensin aldosterone system and its inhibitors in the context of COVID-19 and discuss the potential impact of antiviral and anti-inflammatory treatment options. Acknowledging the comorbidities and potential organ injuries throughout the course of severe COVID-19 is crucial in the clinical management of patients affecting treatment approaches and recovery rate.


Assuntos
COVID-19/imunologia , Doenças Cardiovasculares/imunologia , Inflamação/imunologia , Sistema Renina-Angiotensina , SARS-CoV-2/fisiologia , COVID-19/epidemiologia , Doenças Cardiovasculares/epidemiologia , Hemostasia , Humanos , Imunidade , Microcirculação , Pandemias , Trombose
12.
Front Pharmacol ; 10: 531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191301

RESUMO

Atherosclerosis, the underlying cause of the majority of cardiovascular diseases (CVDs), is a lipid-driven, inflammatory disease of the large arteries. Gold standard therapy with statins and the more recently developed proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have improved health conditions among CVD patients by lowering low density lipoprotein (LDL) cholesterol. Nevertheless, a substantial part of these patients is still suffering and it seems that 'just' lipid lowering is insufficient. The results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) have now proven that inflammation is a key driver of atherosclerosis and that targeting inflammation improves CVD outcomes. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways have to be promoted. The inflammatory processes in atherosclerosis are facilitated by a network of immune cells and their subsequent responses. Cell networking is orchestrated by various (inflammatory) mediators which interact, bind and induce signaling. Over the last years, G-protein coupled receptors (GPCRs) emerged as important players in recognizing these mediators, because of their diverse functions in steady state but also and specifically during chronic inflammatory processes - such as atherosclerosis. In this review, we will therefore highlight a selection of these receptors or receptor sub-families mainly expressed on myeloid cells and their role in atherosclerosis. More specifically, we will focus on chemokine receptors, both classical and atypical, formyl-peptide receptors, the chemerin receptor 23 and the calcium-sensing receptor. When information is available, we will also describe the consequences of their targeting which may hold promising options for future treatment of CVD.

14.
Arterioscler Thromb Vasc Biol ; 39(4): 685-693, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30786742

RESUMO

Objective- Expression of the chemokine-like receptor ChemR23 (chemerin receptor 23) has been specifically attributed to plasmacytoid dendritic cells (pDCs) and macrophages and ChemR23 has been suggested to mediate an inflammatory immune response in these cells. Because chemokine receptors are important in perpetuating chronic inflammation, we aimed to establish the role of ChemR23-deficiency on macrophages and pDCs in atherosclerosis. Approach and Results- ChemR23-knockout/knockin mice expressing eGFP (enhanced green fluorescent protein) were generated and after crossing with apolipoprotein E-deficient ( Apoe-/- ChemR23 e/e) animals were fed a western-type diet for 4 and 12 weeks. Apoe-/- ChemR23 e/e mice displayed reduced lesion formation and reduced leukocyte adhesion to the vessel wall after 4 weeks, as well as diminished plaque growth, a decreased number of lesional macrophages with an increased proportion of M2 cells and a less inflammatory lesion composition after 12 weeks of western-type diet feeding. Hematopoietic ChemR23-deficiency similarly reduced atherosclerosis. Additional experiments revealed that ChemR23-deficiency induces an alternatively activated macrophage phenotype, an increased cholesterol efflux and a systemic reduction in pDC frequencies. Consequently, expression of the pDC marker SiglecH in atherosclerotic plaques of Apoe-/- ChemR23 e/e mice was declined. ChemR23-knockout pDCs also exhibited a reduced migratory capacity and decreased CCR (CC-type chemokine receptor)7 expression. Finally, adoptive transfer of sorted wild-type and knockout pDCs into Apoe-/- recipient mice revealed reduced accumulation of ChemR23-deficient pDCs in atherosclerotic lesions. Conclusions- Hematopoietic ChemR23-deficiency increases the proportion of alternatively activated M2 macrophages in atherosclerotic lesions and attenuates pDC homing to lymphatic organs and recruitment to atherosclerotic lesions, which synergistically restricts atherosclerotic plaque formation and progression.


Assuntos
Aterosclerose/metabolismo , Quimiocinas/fisiologia , Células Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Macrófagos/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Adesão Celular , Quimiocinas/deficiência , Quimiocinas/genética , Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Reporter , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fenótipo , Receptores CCR7/metabolismo
15.
Thromb Haemost ; 119(4): 534-541, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30716778

RESUMO

Inflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1-4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.


Assuntos
Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Quimiocinas/metabolismo , Quimiotaxia , Citocinas/metabolismo , Sistema do Grupo Sanguíneo Duffy/metabolismo , Humanos , Inflamação , Lipídeos/química , Receptores CCR/metabolismo , Receptores CXCR/metabolismo , Receptores de Superfície Celular/metabolismo , Resistência ao Cisalhamento , Transdução de Sinais , Estresse Mecânico
16.
Food Res Int ; 108: 584-594, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735094

RESUMO

Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular tmax. Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds.


Assuntos
Café/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal , Fenóis/metabolismo , Chá/metabolismo , Cromatografia Líquida de Alta Pressão , Interações Hospedeiro-Patógeno , Humanos , Cinética , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...