Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37961438

RESUMO

Breast cancer is the most commonly diagnosed malignancy and the major leading cause of tumor-related deaths in women. It is estimated that the majority of breast tumor-related deaths are a consequence of metastasis, to which no cure exists at present. The FAK family proteins Proline-rich tyrosine kinase (PYK2) and focal adhesion kinase (FAK) are highly expressed in breast cancer, but the exact cellular and signaling mechanisms by which they regulate in vivo tumor cell invasiveness and consequent metastatic dissemination are mostly unknown. Using a PYK2 and FAK knockdown xenograft model we show here, for the first time, that ablation of either PYK2 or FAK decreases primary tumor size and significantly reduces Tumor MicroEnvironment of Metastasis (TMEM) doorway activation, leading to decreased intravasation and reduced spontaneous lung metastasis. Intravital imaging analysis further demonstrates that PYK2, but not FAK, regulates a motility phenotype switch between focal adhesion-mediated fast motility and invadopodia-dependent, ECM-degradation associated slow motility within the primary tumor. Furthermore, we validate our in vivo and intravital imaging results with integrated transcriptomic and proteomic data analysis from xenograft knockdown tumors and reveal new and distinct pathways by which these two homologous kinases regulate breast tumor cell invasiveness and consequent metastatic dissemination. Our findings identify PYK2 and FAK as novel mediators of mammary tumor progression and metastasis and as candidate therapeutic targets for breast cancer metastasis.

2.
J Vis Exp ; (177)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779432

RESUMO

The development and homeostasis of multicellular organisms rely on coordinated regulation of cell migration. Cell migration is an essential event in the construction and regeneration of tissues, and is critical in embryonic development, immunological responses, and wound healing. Dysregulation of cell motility contributes to pathological disorders, such as chronic inflammation and cancer metastasis. Cell migration, tissue invasion, axon, and dendrite outgrowth all initiate with actin polymerization-mediated cell-edge protrusions. Here, we describe a simple, efficient, time-saving method for the imaging and quantitative analysis of cell-edge protrusion dynamics during spreading. This method measures discrete features of cell-edge membrane dynamics, such as protrusions, retractions, and ruffles, and can be used to assess how manipulations of key actin regulators impact cell-edge protrusions in diverse contexts.


Assuntos
Extensões da Superfície Celular , Microscopia , Actinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia
3.
Mol Biol Cell ; 32(21): ar17, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432482

RESUMO

Focal adhesion kinase (FAK) is well established as a regulator of cell migration, but whether and how the closely related proline-rich tyrosine kinase 2 (Pyk2) regulates fibroblast motility is still under debate. Using mouse embryonic fibroblasts (MEFs) from Pyk2-/- mice, we show here, for the first time, that lack of Pyk2 significantly impairs both random and directed fibroblast motility. Pyk2-/- MEFs show reduced cell-edge protrusion dynamics, which is dependent on both the kinase and protein-protein binding activities of Pyk2. Using bioinformatics analysis of in vitro high- throughput screens followed by text mining, we identified CrkI/II as novel substrates and interactors of Pyk2. Knockdown of CrkI/II shows altered dynamics of cell-edge protrusions, which is similar to the phenotype observed in Pyk2-/- MEFs. Moreover, epistasis experiments suggest that Pyk2 regulates the dynamics of cell-edge protrusions via direct and indirect interactions with Crk that enable both activation and down-regulation of Crk-mediated cytoskeletal signaling. This complex mechanism may enable fine-tuning of cell-edge protrusion dynamics and consequent cell migration on the one hand together with tight regulation of cell motility, a process that should be strictly limited to specific time and context in normal cells, on the other hand.


Assuntos
Movimento Celular/genética , Fibroblastos/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Animais , Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Citoesqueleto/metabolismo , Quinase 2 de Adesão Focal/fisiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-crk/genética , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...