Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt B): 112022, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34506783

RESUMO

While exposure of birds to oil-related contaminants has been documented, the related adverse effects this exposure has on Arctic marine birds remain unexplored. Metabolomics can play an important role to explore biologically relevant metabolite biomarkers in relation to different stressors, even at benchmark levels of contamination. The aim of this study was to characterize the metabolomics profiles in relation to polycyclic aromatic compounds (PACs) and trace elements in the liver of two seabird species in the Canadian Arctic. In July 2018, black guillemots (Cepphus grylle) and thick-billed murres (Uria lomvia) were collected by hunters from a region where natural oil seeps occur in the seabed near Qikiqtarjuaq, Nunavut, Canada. A total of 121 metabolites were identified in liver tissue samples using reversed phase and hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry platforms to detect non-polar and polar metabolites, respectively. Sixty-nine metabolites showed excellent repeatability and linearity and were used to examine possible effects of oil-related contaminants exposure (PACs and trace elements). Metabolites including 3-hydroxy anthranilic acid, adenine, adenosine, adenosine mono-phosphate, ascorbic acid, butyrylcarnitine, cholic acid, guanosine, guanosine mono-phosphate, inosine, norepinephrine and threonine showed significant differences (more than two fold) between the two species. Elevated adenine and adenosine, along with decreased reduced/oxidized glutathione ratio, highlighted the potential for oxidative stress in murres. Lipid peroxidation and superoxide dismutase activity assays also confirmed these metabolomic findings. These results will help to characterize the baseline metabolomic profiles of Arctic seabird species with different foraging behaviour and trace element burden.


Assuntos
Poluentes Ambientais , Compostos Policíclicos , Oligoelementos , Animais , Regiões Árticas , Benchmarking , Aves , Canadá , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Metabolômica
2.
Environ Sci Technol ; 55(11): 7521-7530, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983718

RESUMO

Increasing pollution in the Arctic poses challenges in terms of geographical and ecological monitoring. The Baffin Bay-Davis Strait (BBDS) region in the Canadian Arctic Archipelago is of particular concern due to the potential for increased shipping traffic and oil exploration. However, data on background contaminants associated with oil exploration/spills/natural seeps (e.g., polycyclic aromatic compounds [PAC]) and measures of potential effects for Arctic birds are limited. We developed a toxicogenomics approach to investigate the background gene expression profiles for two Arctic-breeding seabirds, the thick-billed murre (Uria lomvia) and the black guillemot (Cepphus grylle), which will aid effects-based monitoring efforts. Chemical burdens (53 PACs and 5 trace elements) and transcriptomic profiles (31 genes using a ToxChip PCR array) were examined in liver tissues (n = 30) of each species collected from the Qaqulluit and Akpait National Wildlife Areas in the BBDS region. While chemical and transcriptomic profiles demonstrated low variability across individuals for each species, gene expression signatures were able to distinguish guillemots collected from two distinct colonies. This toxicogenomics approach provides benchmark data for two Arctic seabirds and is promising for future monitoring efforts and strategic environmental assessments in this sensitive ecosystem and areas elsewhere in the circumpolar Arctic that are undergoing change.


Assuntos
Charadriiformes , Poluentes Ambientais , Animais , Regiões Árticas , Aves , Cruzamento , Canadá , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Humanos , Reação em Cadeia da Polimerase
4.
Sci Total Environ ; 744: 140959, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32711326

RESUMO

There is a growing understanding of how oil pollution can affect aquatic ecosystems, including physical and chemical effects. One of the biggest challenges with detecting the effects of oil-related contaminants on biota from resource development is understanding the background levels and potential effects of the exposure of biota to contaminants from various natural and anthropogenic sources prior to large scale oil and gas operations. Seabirds are effective indicators of pollution, and can be useful for tracking oil-related contaminants in the marine environment. We sampled four seabird species (black guillemot, Cepphus grylle; thick-billed murre, Uria lomvia; black-legged kittiwake, Rissa tridactyla; and northern fulmar, Fulmarus glacialis) in the Baffin Bay-Davis Strait region of the Northwest Atlantic and Arctic oceans, an area where natural oil and gas seeps are present but lacking any large-scale oil and gas projects. We found detectable levels of PACs and several trace elements in all species examined. Alkylated PAC levels were higher than parent compounds in all four seabird species examined, with fulmars and murres having the highest levels detected; mean hepatic concentrations of ∑16PAC were 99.05, 46.42, 12.78 and 9.57 ng/g lw, respectively, for guillemots, murres, fulmars and kittiwakes. Overall, PAC concentrations in the seabird species examined were similar to PAC concentrations measured in other bird species in regions with more industrialization. These findings provide data which can be used to assess the current oil-related contaminant exposure of biota in the region. As well, they provide background levels for the region at a time when shipping activity is relatively low, which can used for future comparisons following expected increases in shipping and oil and gas activities in the region.


Assuntos
Charadriiformes , Poluentes Ambientais/análise , Compostos Policíclicos , Oligoelementos , Animais , Regiões Árticas , Aves , Canadá , Ecossistema , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...