Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057888

RESUMO

Area selective deposition (ASD) is a promising IC fabrication technique to address misalignment issues arising in a top-down litho-etch patterning approach. ASD can enable resist tone inversion and bottom-up metallization, such as via prefill. It is achieved by promoting selective growth in the growth area (GA) while passivating the non-growth area (NGA). Nevertheless, preventing undesired particles and defect growth on the NGA is still a hurdle. This work shows the selectivity of Ru films by passivating the Si oxide NGA with self-assembled monolayers (SAMs) and small molecule inhibitors (SMIs). Ru films are deposited on the TiN GA using a metal-organic precursor tricarbonyl (trimethylenemethane) ruthenium (Ru TMM(CO)3) and O2 as a co-reactant by atomic layer deposition (ALD). This produces smooth Ru films (<0.1 nm RMS roughness) with a growth per cycle (GPC) of 1.6 Å/cycle. Minimizing the oxygen co-reactant dose is necessary to improve the ASD process selectivity due to the limited stability of the organic molecule and high reactivity of the ALD precursor, still allowing a Ru GPC of 0.95 Å/cycle. This work sheds light on Ru defect generation mechanisms on passivated areas from the detailed analysis of particle growth, coverage, and density as a function of ALD cycles. Finally, an optimized ASD of Ru is demonstrated on TiN/SiO2 3D patterned structures using dimethyl amino trimethyl silane (DMA-TMS) as SMI.

2.
Langmuir ; 36(44): 13144-13154, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104359

RESUMO

Area-selective deposition (ASD) offers tremendous advantages when compared with conventional patterning processes, such as the possibility of achieving three-dimensional features in a bottom-up additive fashion. Recently, ASD is gaining more and more attention from IC manufacturers and equipment and material suppliers. Through combination of self-assembled monolayer (SAM) surface passivation of the nongrowth substrate area and atomic layer deposition (ALD) on the growth area, ASD selective to the growth area can be achieved. With the purpose of screening SAM precursors to provide optimal passivation performance on SiO2, various siloxane precursors with different terminal groups and alkyl chains were investigated. Additionally, the surface dependence and growth inhibition of TiN ALD on -NH2, -CF3, and -CH3 terminations is investigated. We demonstrated the methyl termination of the SAM precursor combined with a C18 alkyl chain plays an important role in broadening the ALD selectivity window by suppressing precursor adsorption. Owing to the high surface coverage, excellent thermal stability and longer carbon chain length, an optimized trimethoxy(octadecyl)silane (TMODS) film deposited from liquid phase was able to provide a selectivity higher than 0.99 up to 20 nm ALD film deposited on hydroxyl-terminated Si oxide. The approach followed in this work can allow extending the ASD process window, and it is relevant for a wide variety of applications.

3.
J Phys Chem Lett ; 11(7): 2751-2758, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32187494

RESUMO

Dense arrays of high-aspect-ratio (HAR) vertical nanostructures are essential elements of microelectronic components, photovoltaics, nanoelectromechanical, and energy storage devices. One of the critical challenges in manufacturing the HAR nanostructures is to prevent their capillary-induced aggregation during solution-based nanofabrication processes. Despite the importance of controlling capillary effects, the detailed mechanisms of how a solution interacts with nanostructures are not well understood. Using in situ liquid cell transmission electron microscopy (TEM), we track the dynamics of nanoscale drying process of HAR silicon (Si) nanopillars in real-time and identify a new mechanism responsible for pattern collapse and nanostructure aggregation. During drying, deflection and aggregation of nanopillars are driven by thin-liquid-film instability, which results in much stronger capillary interactions between the nanopillars than the commonly proposed lateral meniscus interaction forces. The importance of thin-film instability in dewetting has been overlooked in prevalent theories on elastocapillary aggregation. The new dynamic mechanism revealed by in situ visualization is essential for the development of robust nanofabrication processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...