Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(43): e2300972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376837

RESUMO

This work reveals the crucial role of zeolite acidity in the synthesis of zeolite-templated carbons (ZTCs). While textural and chemical properties appear to be independent from acidity at a given synthesis temperature, the spin concentration in hybrid materials appears to be strongly impacted by the zeolite acid site concentration. The electrical conductivity of the hybrids and resulting ZTCs are closely related to the spin concentration in the hybrid materials. The amount of zeolite acid sites hence fundamentally impacts the electrical conductivity of the samples that spans over a range of four magnitudes. Electrical conductivity reveals as key parameter to describe the quality of ZTCs.

2.
Toxics ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36976971

RESUMO

The removal of zinc ions from water was investigated using two types of ordered mesoporous silica (SBA-15 and SBA-16). Both materials were functionalized with APTES (3-aminopropyltriethoxy-silane) and EDTA (ethylenediaminetetraacetic acid) through post grafting methods. The modified adsorbents were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen (N2) adsorption-desorption analysis, Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis. The ordered structure of the adsorbents was conserved after modification. SBA-16 was found to be more efficient than SBA-15 owing to its structural characteristics. Different experimental conditions were examined (pH, contact time, and initial zinc concentration). The kinetic adsorption data followed the pseudo-second-order model indicating favorable adsorption conditions. The intra-particle diffusion model plot represented a two-stage adsorption process. The maximum adsorption capacities were calculated by the Langmuir model. The adsorbent can be regenerated and reused several times without a significant decline in adsorption efficiency.

3.
J Environ Health Sci Eng ; 19(2): 1435-1445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900278

RESUMO

PURPOSE: Pollution of surface water and groundwater by bulky molecules such as pesticides has been recognized as a major problem in many countries due to their persistence in aquatic environment and potential adverse health effects. The main purpose of this study is the development of a capable adsorbent to remove these bulky molecules from wastewater such as the pesticide Mesosulfuron-Methyl (MM) by reducing the diffusion path, to overcome the problems of diffusional limitations on microporous adsorbents. METHODS: The adsorption of mesosulfuron-methyl (MM) from aqueous solution is curried out using treated acid HY zeolite. Batch sorption equilibrium and kinetic experiments are conducted to evaluate the efficiency of these materials. Parent zeolites and their derivatives have been characterized by nitrogen adsorption-desorption, pyridine chemisorption followed by infrared spectroscopy and X-ray fluorescence. RESULTS: The acid treatment leads to an increase in the specific surface from 691 to 853 m2 g- 1 for HY(30) and from 631 to 806 m2 g- 1 for the HY(16.6) zeolites. It also leads to a reduction in Lewis acidity from 74 to 25 µmol g- 1 and from 135 to 31 µmol g- 1 for HY(30) and HY(16.6) zeolites respectively, and increases the adsorbent-adsorbate interaction. The adsorption capacity increased from 83 to 99 % after acid treatment. The equilibrium adsorption time is decreased from 15 h to 10 min for the HY(30)_A and from 20 h to 20 min for the HY(16.6)_A for an initial concentration of 20 mg L- 1. The adsorption capacity depends on the pH solution, and the neutral form of the MM is more easily adsorbed into zeolite than the dissociated form via the framework bridged oxygen atoms. For all the samples, the pseudo-second-order kinetic model fits very well with the experimental data. In the case of the modified zeolites, the approaching equilibrium factor R w decreases from 0.08183 to 0.00008 when the Lewis acid sites decrease; indicating that the equilibrium is reached more quickly. S-shape adsorption isotherms indicates that cooperative adsorption phenomena. Nevertheless, the shape of acid treated zeolites evolves to an L type indicating a significant enhancement of the adsorbent - adsorbate interactions inducing better adsorption efficiency. CONCLUSIONS: Mesosulfuron-methyl adsorption has been successfully enhanced after acid treatments of zeolites HY.

4.
J Hazard Mater ; 415: 125656, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756196

RESUMO

Halloysite was processed at 600 °C and then by acid leaching with HCl solutions of different concentrations, i.e. 0.5, 3 and 5 N (H600-xN; x = 0.5, 3 or 5). The resulting materials underwent chemical, textural, and laser diffraction analyses and were used in crystal violet (CV) adsorption. Bath experiments were conducted to evaluate the parameters influencing adsorption. A hydrophobicity study by adsorption of water/toluene and a spectroscopic investigation by FTIR and Raman were conducted, to understand the interaction mechanism. The affinity for CV is as follows: H600-0.5N (115 m2g-1) > H600-3N (434 m2g-1) > H600-5N (503 m2g-1) > H600-0N (61 m2g-1). The maximum adsorption of H600-0.5N would be explained by optimal hydrophilic and hydrophobic properties. Dealumination leads to the creation of more silanols responsible for hydrophilicity. Dehydroxylation at 600 °C combined with dealumination would induce a partial transformation of silanols into siloxanes which are responsible for organophilicity. The CV-H600-0.5N interaction implies two mechanisms: hydrophobic interactions and hydrogen bond. This study focused on hydrophobic interaction as a non-negligible component governing the interaction of organic contaminants with 1:1 clay minerals, while it was not sufficiently considered in the scientific literature.

5.
Phys Chem Chem Phys ; 23(3): 1914-1922, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33459301

RESUMO

In the present work, we report the electron transfers occurring after ionization of the guest molecules of t-stilbene incorporated in graphitized HZSM-5 zeolites and we compare these results with the data obtained previously for graphite-free zeolites. Complementary diffuse reflectance UV-vis and Raman scattering spectroscopies provide evidence for stabilization of long lived charge separated states as observed in non-graphitized ZSM-5. The spectral features indicate that these species are located in the channels of the zeolite structure. However, the pulsed EPR technique shows strong coupling between unpaired electrons and the 13C atoms in the case of graphitized zeolites while this interaction is not observed in normal zeolites. This is assigned to the presence of charge transfer complexes in the close vicinity of graphite areas and to the possible electron transfer to the graphitized domain. Using cyclic voltammetry, an electrochemical response is observed for the first time in such systems demonstrating the role played by graphite in the electron transfers.

6.
Phys Chem Chem Phys ; 22(21): 12015-12027, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32421132

RESUMO

In the present work, we investigate the electron transfer occurring in the porous void of three MFI-type zeolite (ZSM-5) nanomaterials (nanocrystals, nanosheets and nanosponges) after adsorption and photoexcitation of t-stilbene (t-St). ZSM-5 nanosheets are constituted of lamellar stacking of several nanosheets (20-40 nm) where each nanosheet has a thickness of 2 nm. Nanosponges are composed of ZSM-5 nanocrystals (2-3 nm) separated by mesoporous holes of 5.8 nm facilitating the synthesis of hierachical materials. While the nanosheets show microporosity similar to that observed for the ZSM-5 nanocrystals, the absorption isotherms of the nanosponges show the existence of secondary micropores. After photoirradiation of t-St, UV-vis absorption spectroscopy shows the formation of charge separated states (radical cation and charge transfer complex) in the nanocrystals and in the nanosheets whereas no ionized species is detected in the nanosponges. The radical cation (RC) is stabilized in the nanosheets while it evolves very rapidly towards a Charge Transfer Complex (CTC) in the nanocrocrystals. The particular morphology of the nanosheets and nanosponges is put forward to explain this result since all host materials are of the MFI-type. To investigate ultra-short phenomena in the three nanomaterials, the UV-vis transient spectra were recorded between 2 and 450 µs after photoexcitation by nanosecond laser pulses. In the nanocrystals and nanosheets only the RC is detected whereas CTC formation is not observed. Photoexcitation of t-St in the nanosponges also leads to the formation of a RC but it recombines completely within 70 µs. This suggests the preferential location of t-St in the secondary micropores with pores larger than the micropores of the MFI-type framework and possibly in the mesopores of the nanosponges.

7.
ACS Appl Mater Interfaces ; 9(18): 15672-15684, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28406007

RESUMO

The aim of this work was to obtain an in-depth understanding of the U(VI) adsorption mechanism over amino-functionalized mesoporous silica SBA-15 and highlights its high efficiency in aqueous media for U(VI) removal and preconcentration. The samples were synthesized and functionalized by both grafting and co-condensation methods, using different alkyl-substituted amine groups and were characterized using X-ray diffraction, N2 physisorption, Fourier transform infrared spectroscopy, and elemental C-H-N-S analyses. The properties for U(VI) adsorption were evaluated under discontinuous conditions, with the determination of the effect of several parameters (initial pH, contact time, initial U(VI) concentration, functionalization method, and organic moiety composition). U(VI) adsorption over grafted materials reached equilibrium at around 30 min, with a maximum adsorption capacity of 573 mgU·gads-1 for the most efficient material at its optimal adsorption pH (equal to 6) at 20 °C. Functionalized materials by grafting exhibit better adsorption capacities than co-condensed samples because of higher function surface density and function availability. U(VI) adsorption mechanisms were also studied by measuring the electrophoretic mobilities of the particles, aqueous U(VI) speciation, in situ attenuated total reflection infrared and Raman spectroscopies, and transmission electron microscopy analysis. U(VI) adsorption occurred through the formation of an inner sphere complex. The localization of adsorbed U(VI) has also been determined inside of the mesopores, with the formation of several particles on the nanometer scale, in the size of U-hydroxy phases. Besides, the study of the reusability of amino-functionalized SBA-15 by applying adsorption-desorption cycles was also conducted. The adsorption capacity of the material remains stable for at least four adsorption-desorption cycles without any noticeable capacity decrease.

8.
Nanoscale ; 5(19): 8958-62, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23965659

RESUMO

Although undoped diamond is insulating, hydrogenated bulk diamond surfaces exhibit surface conductivity under air and are electrochemically active in aqueous solutions. Due to their large surface/volume ratio, similar surface effects may exhibit a dramatic impact on the properties of nanodiamonds. Here we show that plasma-hydrogenated detonation nanodiamonds (NDs-H) display a positive zeta potential in water due to charge transfer with a redox couple involving oxygen in water. The transfer doping of NDs-H in water can be modulated by pH. Surprisingly, after acid addition, strong Coulomb coupling between NDs-H and adsorbed counterions induces the self-assembly of NDs-H into organized macro-structures reaching millimeter scale.

9.
Chemphyschem ; 13(2): 504-13, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22213185

RESUMO

The mere mixing of N-alkylphenothiazines with three channel-type acid zeolites with various structures (ferrierite, H-MFI, and mordenite) induces the spontaneous ionization of the heterocyclic molecule in high yield upon adsorption. The diffuse reflectance UV-visible absorption and Raman scattering spectra show that the accessibility of the highly polarizing acid sites is not indispensable to induce the spontaneous ionization process. Due to their particularly low ionization potential values (6.7 eV), the adsorption of the molecules on the external surface or in the inner volume is the key parameter to generate the radical cation. However, the ionization yield and charge stabilization are intimately correlated to the possibility of the zeolites accommodating molecules inside their channels. Moreover, the higher electrostatic field gradient induced by high confinement is required to favor the second ionization and dication formation. The alkyl chain length plays a decisive role by either slowing down the diffusion process or blocking the molecule at the pore entry. Therefore, the efficiency of the ionization process that depends on the number of adsorbed molecules decreases significantly from phenothiazine to the N-alkylphenothiazines. The spectral data demonstrate that deformation of the alkyl group is necessary to allow the diffusion of the molecules into the channels.

10.
J Hazard Mater ; 203-204: 357-62, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22226714

RESUMO

This paper deals with the removal of α-endosulfan from water over HY and steamed HBEA zeolites. Experiments were performed to understand the adsorption mechanisms of α-endosulfan on zeolites and to determine the most efficient adsorbent for the purification of water contaminated by this pesticide. The experiments exhibit that α-endosulfan was adsorbed in the micropores. In the case of HY zeolites an adsorption of α-endosulfan molecules on BrØnsted sites was pointed out, due to a preferential water adsorption in mesopores. Moreover a physisorption of α-endosulfan occurred in micropores. For steamed HBEA zeolites physisorption in micropores was pointed out as the adsorption mode. For both types of zeolites a decrease of the adsorption capacities was noticed when the acidity of zeolites increased. There was also a linear relation between the adsorption capacities of α-endosulfan and the hydrophobicity (HI) of the samples and by determining the values of HI for a type of zeolite it was possible to deduce the uptake of α-endosulfan. The HY(40) sample was the most efficient for the removal of α-endosulfan from water because of preferential adsorption of water molecules in mesopores and lower acidity. For this sample the adsorption capacity for α-endosulfan was about 833.33 mg/g where for the most effective HBEA sample (St700(3)) the adsorption capacity was about 793.65 mg/g.


Assuntos
Endossulfano/isolamento & purificação , Praguicidas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Zeolitas/química , Adsorção , Termodinâmica
11.
J Hazard Mater ; 201-202: 107-14, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22169242

RESUMO

The ability of various as-prepared and organically modified MCM-41 and HMS mesoporous silica materials to behave as efficient adsorbents for organic pollutants in aqueous solution was investigated by using different surface functionalization procedures, so as to adjust their hydrophilic/hydrophobic balance. The hydrophilic and organophilic properties of the parent silica materials and their corresponding surface functionalized counterparts were studied by using water and toluene adsorption isotherms. Their quantification was determined by the hydrophobic static index value (HI(static)), as well as by the silanol and organic group densities after the functionalization step. A clear correlation could be found between the HI(static) values and either the superficial silanol density, or the amount of organic moieties grafted or incorporated to the silica materials. For the highly organically functionalized samples, the residual superficial silanol groups (<50%) are sufficiently isolated from each other so as to prevent the water capillary condensation within the pores, thereby leading to an increased hydrophobic character of the resulting mesoporous silica. Those hydrophobic samples, for which the water liquid meniscus formation within the mesopores was minimized or avoided, exhibited a storage capacity for an organic pollutant (N,N-diethyl-m-toluamide, DEET) in aqueous solution more than 20 times higher than that of the corresponding unmodified sample, independently of the silica nature (MCM-41 or HMS). For all calcined and silylated samples, the DEET maximum adsorption capacities determined by the Langmuir model could be correlated with the silica surface coverage by trimethylsilyl groups and thus with the remaining silanol amount.


Assuntos
DEET/isolamento & purificação , Dióxido de Silício/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cromatografia Líquida de Alta Pressão , Análise Diferencial Térmica , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Propriedades de Superfície , Difração de Raios X
12.
Chem Commun (Camb) ; (20): 2290-1, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15489985

RESUMO

A simple method based on the characterization (composition, Bronsted and Lewis acidities) of acid treated HBEA zeolites was developed for estimating the concentrations of framework, extraframework and defect Al species.

14.
Angew Chem Int Ed Engl ; 38(12): 1819-1822, 1999 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29711190

RESUMO

Evidence of the photogenerated long-lived biphenyl radical and a trapped electron in the void space of aluminated nonacidic ZSM-5 zeolites has been obtained from the time-resolved UV/Vis absorption, Raman scattering, and EPR spectra. The restoration of the ground states implicates the existence of long-lived positive holes in the framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...