Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 193: 93-102, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851445

RESUMO

Teacher-student interaction allows students to combine prior knowledge with new information to develop new knowledge. It is widely understood that both communication mode and students' knowledge state contribute to the teaching effectiveness (i.e., higher students' scores), but the nature of the interplay of these factors and the underlying neural mechanism remain unknown. In the current study, we manipulated the communication modes (face-to-face [FTF] communication mode/computer-mediated communication [CMC] mode) and prior knowledge states (with vs. without) when teacher-student dyads participated in a teaching task. Using functional near-infrared spectroscopy, the brain activities of both the teacher and student in the dyads were recorded simultaneously. After teaching, perceived teacher-student interaction and teaching effectiveness were assessed. The behavioral results demonstrated that, during teaching with prior knowledge, FTF communication improved students' academic performance, as compared with CMC. Conversely, no such effect was found for teaching without prior knowledge. Accordingly, higher task-related interpersonal neural synchronization (INS) in the left prefrontal cortex (PFC) was found in the FTF teaching condition with prior knowledge. Such INS mediated the relationship between perceived interaction and students' test scores. Furthermore, the cumulative INS in the left PFC could predict the teaching effectiveness early in the teaching process (around 25-35 s into the teaching task) only in FTF teaching with prior knowledge. These findings provide insight into how the interplay between the communication mode and students' knowledge state affects teaching effectiveness. Moreover, our findings suggest that INS could be a possible neuromarker for dynamic evaluation of teacher-student interaction and teaching effectiveness.


Assuntos
Comunicação , Sincronização Cortical/fisiologia , Conhecimento , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Ensino , Adulto , Feminino , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto Jovem
2.
J Nanosci Nanotechnol ; 12(5): 3931-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852327

RESUMO

Mn2+ ions doped ZnS semiconductor nanocrystals (ZnS:Mn NCs) were synthesized using colloidal chemical method at 70 degrees C without any capping agents. The as-prepared undoped ZnS and ZnS:Mn NCs were characterized by UV-Vis absorption spectra, fluorescent emission spectra, X-ray powder diffraction (XRD), inductively coupled plasma analysis (ICP), X-ray photoelectron spectroscopy (XPS), Dynamic light scattering (DLS), cyclic voltammogram and electronic transmission microscopy (TEM). The dependence of photoluminescence of ZnS:Mn NCs on dopant concentration was studied. The results show that Mn2+ ions mainly stay at ZnS nanocystal surface, and Mn2+-surface defect state complex was formed, as a result of which, surface defect emission of ZnS nanocrystals was substituted with Mn2+-related PL emission. The strongest fluorescent emission intensity was obtain at 1.85 at% Mn2+ doped ZnS:Mn NCs. The Mn2+ doped ZnS:Mn NCs are of 5 nm in diameter. The emission peak at 575 nm is attributed to d-d (4T1 --> 6A1) transition of Mn2+ ions. The existence of Mn2+-related photoluminescence could be well correlated with cyclic voltammogram of Mn2+-doped NCs, where pair of oxidation and reduction peaks were clearly observed due to the doped Mn2+ ions. The adsorbed Mn2+ ions on ZnS NCs produced neither Mn2+ emission nor redox peaks. For heavily doped ZnS:Mn NCs (4.87 at%), redox peaks gap in cyclic voltammogram became larger and new oxidation peak appeared. Correspondingly, when the Mn2+ doping concentration reached 4.87 at%, the Mn2+-related emission totally disappears due to the Mn-Mn interactions. This work implys that electrochemical technique is possibly an useful tool to probe the local structure of doped Mn2+ ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...