Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Ecotechnol ; 8: 100129, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36156994

RESUMO

Recycling waste tires through pyrolysis technology generates refractory wastewater, which is harmful to the environment if not disposed properly. In this study, a combined process of coagulation detoxification and biodegradation was used to treat tire pyrolysis wastewater. Organics removal characteristics at the molecular level were investigated using electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that nearly 90% of the organic matter from the wastewater was removed through the process. Preference of the two coagulants for different classes of organics in tire pyrolysis wastewater was observed. The covalently bound inorganic-organic hybrid coagulant (CBHyC) used in this work had a complementary relationship with biodegradation for the organics removal: this coagulant reduced toxicity and enhanced the biodegradation by preferentially removing refractory substances such as lignin with a high degree of oxidation (O/C > 0.3). This study provides molecular insight into the organics of tire pyrolysis wastewater removed by a combined treatment process, supporting the advancement and application of waste rubber recycling technology. It also contributes to the possible development of an effective treatment process for refractory wastewater.

2.
Nat Nanotechnol ; 14(2): 191, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675037

RESUMO

In the version of the Supplementary Information file originally published with this Article, the images used for Supplementary Fig. 4 were incorrect and have now been replaced. This does not affect the results of the Article.

3.
Nat Nanotechnol ; 14(1): 64-71, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478276

RESUMO

Current technologies for water purification are limited by their contaminant-specific removal capability, requiring multiple processes to meet water quality objectives. Here we show an innovative biomimetic micellar nanocoagulant that imitates the structure of Actinia, a marine predator that uses its tentacles to ensnare food, for the removal of an array of water contaminants with a single treatment step. The Actinia-like micellar nanocoagulant has a core-shell structure and readily disperses in water while maintaining a high stability against aggregation. To achieve effective coagulation, the nanocoagulant everts its configuration, similar to Actinia. The shell hydrolyses into 'flocs' and destabilizes and enmeshes colloidal particles while the core is exposed to water, like the extended tentacles of Actinia, and adsorbs the dissolved contaminants. The technology, with its ability to remove a broad spectrum of contaminants and produce high-quality water, has the potential to be a cost-effective replacement for current water treatment processes.

4.
Environ Sci Technol ; 52(21): 12642-12648, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30335978

RESUMO

Coagulation is an important process to remove organics from water. The molecular composition and structure of organic matter influence water quality in many ways, and the lack of information regarding the organics removed by different coagulants makes it challenging to optimize coagulation processes and ensure reclaimed water safety. In this paper, we investigated coagulation of secondary biological effluent from a municipal sewage treatment plant with different coagulants. We emphasized investigation of organics removal characteristics at the molecular level using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with electrospray ionization (ESI). We found that conventional coagulants can only partially remove condensed polycyclic aromatics and polyphenols with low H/C (H/C < 0.7) and highly unsaturated and phenolic compounds and aliphatic compounds with high O/C (O/C > 0.6). A new coagulant, CBHyC, had better removal efficiencies for all organics with different element compositions and molecular structures, especially organics that are resistant to conventional coagulants such as highly unsaturated and phenolic compounds and aliphatic compounds located in 0.3 < O/C < 0.8 and 1.0 < H/C < 2.0 regions and sulfur-containing compounds with higher O/C (e.g., anionic surfactants and their metabolites or coproducts). This study provides molecular insights into the organics removed by different coagulants and provides data supporting the possible optimization of advanced wastewater treatment processes.


Assuntos
Esgotos , Purificação da Água , Espectrometria de Massas , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA