Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(20): 14649-14658, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37816698

RESUMO

A metal-free and selective oxidative methyl C-H functionalization of BHT with aniline compounds has been developed. This innovative method enables the facile and efficient synthesis of a diverse array of BHT-functionalized N-containing skeletons, including arylamines, benzoxazoles, benzothiazoles, benzimidazoles, quinazolines, and quinazolinones, all of which are challenging to access. The control experiment involving TEMP18O suggests that the radical adduct of TEMPO with the benzyl radical of BHT may serve as an intermediate.

2.
J Org Chem ; 87(14): 9112-9127, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35786919

RESUMO

The ubiquity of benzoxazoles in natural products, drugs, and functional materials has stimulated numerous efforts toward their synthesis; however, the developed methods rely on prefunctionalized substrates and lack generality. Under metal-free conditions, a highly general synthesis of benzoxazoles direct from abundant and easily available phenols and amines is developed via a modular phenol functionalization controlled by TEMPO. In the reaction, various phenols and primary amines with a broad range of functional groups are compatible, producing structurally and functionally diverse benzoxazoles (64 examples) without or with trace observation of the byproducts of phenol transformation with amines. The practical synthesis, especially for drug tafamidis, demonstrates decisive advantages in generality, selectivity, efficiency, and atom- and step-economies over traditional methods, even in the cases of low yields. Mechanistically, the radical adducts of TEMPO with ortho-cyclohexa-2,4-dien-1-one radicals rather than the well-recognized cyclohexa-3,5-diene-1,2-diones may serve as intermediates.


Assuntos
Aminas , Fenóis , Benzoxazóis , Catálise , Metais , Estresse Oxidativo , Fenol
3.
Org Biomol Chem ; 20(27): 5416-5422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35748805

RESUMO

A facile synthesis of 1H-imidazoles by direct oxidative annulation of aryl methyl ketones and primary amines has been developed in the presence of TEMPO under weakly acidic conditions. By replacing amines with ammonium acetate, 2H-imidazole skeletons were achieved for the first time from ketones. Substrates containing various functional groups, such as alkyl, aryl, naphthyl, halogen (F, Cl, Br, I), nitro, trifluoromethyl, sulfonyl ester, furyl, thienyl, and pyridyl groups, were readily transformed into the desired products. The application potential of this method was verified by the scale-up synthesis and Sonogashira coupling functionalization of imidazoles. Mechanistically, the α-TEMPO-enamine adduct may serve as the key reaction intermediate.


Assuntos
Aminas , Cetonas , Acetatos , Acetona , Catálise , Óxidos N-Cíclicos , Imidazóis , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...