Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37233558

RESUMO

Polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes, which are extensively utilized in seawater desalination and water purification, are limited by the upper bounds of permeability-selectivity. Recently, constructing an interlayer between the porous substrate and the PA layer has been considered a promising approach, as it may resolve the trade-off between permeability and selectivity, which is ubiquitous in NF membranes. The progress in interlayer technology has enabled the precise control of the interfacial polymerization (IP) process, which regulates the structure and performance of TFC NF membranes, resulting in a thin, dense, and defect-free PA selective layer. This review presents a summary of the latest developments in TFC NF membranes based on various interlayer materials. By drawing from existing literature, the structure and performance of new TFC NF membranes using different interlayer materials, such as organic interlayers (polyphenols, ion polymers, polymer organic acids, and other organic materials) and nanomaterial interlayers (nanoparticles, one-dimensional nanomaterials, and two-dimensional nanomaterials), are systematically reviewed and compared. Additionally, this paper proposes the perspectives of interlayer-based TFC NF membranes and the efforts required in the future. This review provides a comprehensive understanding and valuable guidance for the rational design of advanced NF membranes mediated by interlayers for seawater desalination and water purification.

2.
Sci Total Environ ; 833: 155272, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427618

RESUMO

As a by-product of wastewater treatment, waste activated sludge (WAS) has complex composition, strong hydrophilic extracellular polymeric substance (EPS), which make it difficult to dewater. In this study, an electro-peroxone oxidation-Fe(III) coagulation (E-peroxone-Fe(III)) sequential conditioning approach was developed to improve WAS dewaterability. At E-peroxone oxidation stage, hydrogen peroxide was generated through 2-electron path on a carbon polytetrafluoroethylene cathode, and reacted with the sparged O3 to produce hydroxyl radicals. At the subsequent coagulation stage, Fe(III) was dosed to coagulate the small WAS fragments and release water from WAS. Along E-peroxone-Fe(III) subsequent conditioning process, the physicochemical properties of WAS, main components, functional groups and evolution of protein secondary structure, and typical amino acids in EPS, as well as the type and semi-quantitative of elements in WAS, were investigated. The results indicated that under the optimal conditions, the reductions of specific resistance to filterability (SRF) and capillary suction time (CST) for WAS equalled 78.18% and 71.06%, respectively, and its bound water content decreased from 8.87 g/g TSS to 7.67 g/g TSS. After E-peroxone oxidation, part of protein and polysaccharide migrated outside from TB-EPS to slime, the ratio of α-helix/(ß-sheet + random coil) declined, even some of organic-N disintegrated to inorganic-N. At Fe(III) coagulation stage, re-coagulation of the dispersed WAS fragments and easy extraction from inner EPS for protein and polysaccharide occurred. Furthermore, the protein secondary structure of ß-sheet increased by 13.48%, the contents of hydrophobic and hydrophilic amino acids also increased. In addition, a strong negative correlation between the hydrophobic amino acid content of Met in slime and CST or SRF (R2CST = -0.999, p < 0.05 or R2SRF = -0.948, p < 0.05) occurred, while a strong positive correlation between the hydrophilic amino acid content of Cys in TB-EPS and CST or SRF (R2CST = 0.992, p < 0.05 or R2SRF = 0.921, p < 0.05) occurred, which could be related to the WAS dewaterability.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Aminoácidos , Compostos Férricos , Oxirredução , Polissacarídeos , Proteínas , Esgotos/química , Eliminação de Resíduos Líquidos , Água/química
3.
Pestic Biochem Physiol ; 183: 105083, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430073

RESUMO

Metformin, considered to be a potent AMPK activator, is widely used for clinical therapy of cancer and diabetes due to its distinct function in regulating cell energy balance and body metabolism. However, the effect of metformin-induced AMPK activation on the growth and development of insects remains largely unknown. In the present study, we focused on the role of metformin in regulating the growth and development of Hyphantria cunea, a notorious defoliator in the forestry. Firstly, we obtained the complete coding sequences of HcAMPKα2, HcAMPKß1, HcAMPKγ2 from H. cunea, which encoded a protein of 512, 281, and 680 amino acids respectively. Furthermore, the phylogenetic analysis revealed that these three subunits were highly homologous with the AMPK subunits from other lepidopteran species. According to the bioassay, we found metformin remarkably restrained the growth and development of H. cunea larvae, and caused molting delayed and body weight reduced. In addition, expressions of HcAMPKα2, HcAMPKß1, and HcAMPKγ2 were upregulated 3.30-, 5.93- and 5.92-folds at 24 h after treatment, confirming that metformin activated AMPK signaling at the transcriptional level in H. cunea larvae. Conversely, the expressions of two vital Halloween genes (HcCYP306A1 and HcCYP314A1) in the 20E synthesis pathway were remarkably suppressed by metformin. Thus, we presumed that metformin delayed larval molting probably by impeding 20E synthesis in the H. cunea larvae. Finally, we found that metformin accelerated glycogen breakdown, elevated in vivo trehalose level, promoted chitin synthesis, and upregulated transcriptions of the genes in chitin synthesis pathway. Taken together, the findings provide a new insight into the molecular mechanisms by which AMPK regulates carbohydrate metabolism and chitin synthesis in insects.


Assuntos
Metformina , Mariposas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Quitina/metabolismo , Larva/metabolismo , Metformina/metabolismo , Metformina/farmacologia , Muda , Mariposas/genética , Filogenia
4.
Pestic Biochem Physiol ; 179: 104961, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802511

RESUMO

As a typical glycolytic inhibitor, 3-bromopyruvate (3-BrPA) has been extensively studied in cancer therapy in recent decades. However, few studies focused on 3-BrPA in regulating the growth and development of insects, and the relationship and regulatory mechanism between glycolysis and chitin biosynthesis remain largely unknown. The Hyphantria cunea, named fall webworm, is a notorious defoliator, which caused a huge economic loss to agriculture and forestry. Here, we investigated the effects of 3-BrPA on the growth and development, glycolysis, carbohydrate homeostasis, as well as chitin synthesis in H. cunea larvae. To elucidate the action mechanism of 3-BrPA on H. cunea will provide a new insight for the control of this pest. The results showed that 3-BrPA dramatically restrained the growth and development of H. cunea larvae and resulted in larval lethality. Meanwhile, we confirmed that 3-BrPA caused a significant decrease in carbohydrate, adenosine triphosphate (ATP), pyruvic acid (PA), and triglyceride (TG) levels by inhibiting glycolysis in H. cunea larvae. Further studies indicated that 3-BrPA significantly affected the activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and trehalase, as well as expressions of the genes related to glycolysis, resulting in carbohydrate homeostasis disorder. Moreover, it was found that 3-BrPA enhanced 20-hydroxyecdysone (20E) signaling by upregulating HcCYP306A1 and HcCYP314A1, two critical genes in 20E synthesis pathway, and accelerated chitin synthesis by upregulating transcriptional levels of genes in the chitin synthesis pathway in H. cunea larvae. Taken together, our findings provide a novel insight into the mechanism of glycolytic inhibitor in regulating the growth and development of insects, and lay a foundation for the potential application of glycolytic inhibitors in pest control as well.


Assuntos
Carboidratos , Glicólise , Animais , Homeostase , Larva , Piruvatos
5.
Ultrason Sonochem ; 72: 105411, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33321403

RESUMO

In this work, as a new strategy, ultrasound/H2O2/MOF system was firstly applied by environmental-benign Fe-MOFs (MIL-53, MIL-88B and MIL-101) for tetracycline hydrochloride removal. The syntheticFe-MOFs were characterized by XRD, FTIR, SEM, XPS, N2 sorption-desorption isotherms and CO-FTIR. MIL-88B demonstrated the best catalytic performance because of its highest amount of Lewis acid sites. Influencing factors, contrast experiment, and corresponding dynamics were carried out to obtain the best experimental conditions and reaction system. Under optimal conditions ([Tetracyclinehydrochloride] = 10 mg/L, [MIL-88B] = 0.3 g/L, [H2O2] = 44 mM, [ultrasound power] = 60 W, and pH = 5.0), the-first-order kinetic rate constant k was calculated to be 0.226 min-1, higher than the simple combination of the ultrasound system (0.004) and MIL-88B/H2O2 system (0.163), indicating the importance of synergistic effect between ultrasound and Fenton reaction. EPR test and quenching experiment proved that ·OH is mainly responsible for tetracycline hydrochloride removal. The major reaction path is the adsorption and decomposition of H2O2 by coordinative unsaturated iron sites on Fe-MOF, but it is not the only path. The direct decomposition of H2O2 and the cavitation effect caused by ultrasound also contribute to the generation of OH.

6.
J Insect Physiol ; 122: 104041, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126216

RESUMO

In insects, 20-hydroxyecdysone (20E) mediates developmental transitions and regulates molting processes through activation of a series of transcription factors. Broad-Complex (Br-C), a vital gene in the 20E signalling pathway, plays crucial roles during insect growth processes. However, whether Br-C affects chitin synthesis in insects remains unclear. In the present study, the Br-C gene from Lymantria dispar, a notorious defoliator of forestry, was identified based on transcriptome data, and subjected to bioinformatic analysis. The regulatory functions of LdBr-C in chitin synthesis and metabolism in L. dispar larvae were analysed by RNA interference (RNAi). The full-length LdBr-C gene (1431 bp) encodes a 477 amino acid (aa) polypeptide containing a common BRcore region (391 aa) at the N-terminus and a C-terminal Zinc finger domain (56 aa) harbouring two characteristic C2H2 motifs (CXXC and HXXXXH). Phylogenetic analyses showed that LdBr-C shares highest homology and identity with Br-C isoform 7 (83.12%) of Helicoverpa armigera. Expression profiles indicate that LdBr-C was expressed throughout larval and pupal stages, and highly expressed in prepupal and pupal stages. Furthermore, LdBr-C expression was strongly induced by exogenous 20E, and suppressed dramatically after application of dsLdBr-C. Bioassay results showed that knockdown of LdBr-C caused larval developmental deformity, significant weight loss, and a mortality rate of 67.18%. Knockdown of LdBr-C significantly down-regulated transcription levels of eight critical genes (LdTre1, LdTre2, LdG6PI, LdUAP, LdCHS1, LdCHS2, LdTPS and LdCHT) related to chitin synthesis and metabolism, thereby lowering the chitin content in the midgut and epidermis. Our findings demonstrate that Br-C knockdown impairs larval development and chitin synthesis in L. dispar.


Assuntos
Quitina/metabolismo , Ecdisterona/metabolismo , Mariposas/metabolismo , Fatores de Transcrição/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Hormônios de Inseto/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Muda/genética , Filogenia , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Interferência de RNA , Transdução de Sinais
7.
Pestic Biochem Physiol ; 163: 64-75, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973871

RESUMO

Fenoxycarb as a juvenile hormone analogue and methoxyfenozide (RH-2485) as a 20-hydroxyecdysone (20E) agonist are two main insect growth regulators (IGRs) used for pest control, whose insecticidal mechanisms had been widely reported in past decades. However, there were few studies focused on their effects on the carbohydrate metabolism of insects. Here, we reported that two IGRs (fenoxycarb and RH-2485) significantly affected growth and development of L. dispar larvae and caused larval lethality. Furthermore, both contens of three sugars (glycogen, threhalose, glucose) in four tissues (fat body, midgut, hemolymph and epidermis) and trehalase activity in three tissues (fat body, midgut and hemolymph) of L. dispar larvae were markedly affected by these two IGRs. Moreover, we found that mRNA expression levels of LdTPS, LdTre1 and LdTre2 in L. dispar larvae were dramatically suppressed by two IGRs. Additionally, chitin content in both midgut and epidermis decreased significantly after L. dispar larvae treated with fenoxycarb or RH-2485. Summarily, these results indicated that these two IGRs disturbed glycometabolism in L. dispar larvae, resulting in impeding chitin synthesis, generating new epidermis failure, disrupting molting and larval lethality in the end.


Assuntos
Quitina , Hormônios Juvenis , Animais , Hidrazinas , Larva , Fenilcarbamatos
8.
Ultrason Sonochem ; 57: 242-252, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31078395

RESUMO

As a precursor of disinfection byproducts, humic acid (HA) has adverse effects on aquatic environments and human health. Currently, many advanced oxidation processes (AOPs) have been proposed to remove HA from drinking water, one of which is photocatalysis. However, the long reaction time required for degradation and drawbacks of the photocatalysts limit the large-scale application of photocatalysis. Therefore, two principal objectives were achieved in this work. First regarding the technology, we combined photocatalysis with ultrasonic waves to remove HA. Second regarding the photocatalyst, quaternary Fe3O4/TiO2-N-GO (FTNG) sono-photocatalysts with different amounts of Fe3O4 were first synthesized using a simple hydrothermal method. Characterizations were performed to confirm the successful synthesis of the sono-photocatalyst and to determine some of its properties. The influence of different experimental factors such as Fe3O4 content, ultrasonic power, catalyst dosage and initial HA concentration were studied. The first-order kinetic and second-order kinetic equations were used to simulate the experimental data. The results showed that FTNG-0.2 with 0.2 g of Fe3O4, which was added upon preparation, showed the highest sono-photocatalytic ability. In our experimental setup, greater than 99% removal efficiency (UV254) and 94% mineralization rate (TOC) were achieved within 90 min at the optimum conditions (60 W ultrasound power and 1.0 g/L catalyst dosage for 30 mg/L HA). Compared with the pseudo-first-order kinetic model, pseudo-second-order model fitted better with the experimental data and it had higher R2 values of 0.92, 0.98 and 0.98 for 30, 40 and 50 mg/L of HA, respectively. According to the scavenging tests and the ESR analysis, both of the OH and O2- were produced in the reaction, however, O2- radicals were assumed to be the dominating reactive species for the HA degradation. Moreover, after five repetitive experiments, the removal efficiency of HA can still reach 88.5%, indicating high stability of FTNG-0.2 sono-photocatalyst. The mechanism of degradation of HA by FTNG-0.2 in sono-photocatalytic system was mentioned based on several factors including the ultrasonic cavitation effect, Fenton-like reactions, photocatalytic reactions, etc. In fact, this was the first study to treat HA through sono-photocatalytic process, which showed great potential in drinking water treatment.


Assuntos
Substâncias Húmicas , Sonicação , Água/química , Catálise , Óxido Ferroso-Férrico/química , Peróxido de Hidrogênio/química , Cinética , Processos Fotoquímicos
9.
Pestic Biochem Physiol ; 153: 9-16, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30744901

RESUMO

Our previous studies had identified that both crude extracts and total alkaloid from Chelidonium majus exerted a significant antifeeding and larval lethality on Lymantria dispar. Moreover, sanguinarine, chelidonine, berberine hydrochloride and coptisine were the main alkaloid in C. majus exerting toxicity to L. dispar. In this paper, we evaluated the insecticidal and antifeeding activities of each alkaloid on the 3rd instar L. dispar larvae by bioassay. Meanwhile, the effects of alkaloids from C. majus on the activities and mRNA levels of three main digestive enzymes in L. dispar larvae were investigated. The results indicated that sanguinarine possessed the strongest insecticidal activity with a LD50 value of 4.963 µg/larva, and the coptisine showed little lethality to 3 rd instar L. dispar larvae among four alkaloids from C. majus. The insecticidal capacity of four alkaloids on 3rd instar L. dispar larvae was in the following decreasing order of sanguinarine > chelidonine > berberine hydrochloride > coptisine. Similarly, except coptisine, the other three alkaloids significantly reduced food intakes of third instar L. dispar larvae and suppressed activities of three digestive enzymes (α-amylase, lipase and total protease) simultaneously. Finally, qRT-PCR analysis revealed that the transcriptions of α-amylase, lipase and serine protease were affected by sanguinarine. Especially, at 48 h after treatment, the mRNA expressions of those digestive enzymes were significantly suppressed by sanguinarine. In conclusion, we suggested that alkaloids from C. majus induced antifeeding and larval lethality on L. dispar larvae by suppressing food intake and digestive enzymes in L. dispar. Our findings provide a novel insight into evaluating the antifeeding and insecticidal properties of C. majus, which afford a new strategy for integrated pest management programs as well.


Assuntos
Benzofenantridinas/toxicidade , Chelidonium , Inseticidas/toxicidade , Isoquinolinas/toxicidade , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Amilases/metabolismo , Animais , Berberina/toxicidade , Ingestão de Alimentos/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Larva/fisiologia , Lipase/metabolismo , Mariposas/fisiologia , Peptídeo Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...