Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Comput Biol Med ; 173: 108295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520920

RESUMO

Retinal segmentation is a crucial step in the early warning of human health conditions. However, retinal blood vessels possess complex curvature, irregular distribution, and contain multi-scale fine structures, which make the limited receptive field of regular convolution challenging to process their vascular details efficiently. Additionally, the encoder-decoder based network leads to irreversible spatial information loss because of multiple downsampling, resulting in over-segmentation and missed segmentation of the vessels. For this reason, we develop a high-resolution network based on Deformable Convolution v3, called HRD-Net. By constructing a high-resolution representation, the network allows special attention to be paid to the details of tiny blood vessels. The proposed feature enhancement cascade module based on Deformable Convolution v3 can flexibly adapt and capture the ever-changing morphology and intricate connections of retinal blood vessels, ensuring the continuity of vessel segmentation. In the output phase of the network, the proposed global aggregation module integrates full-resolution feature maps while suppressing redundant features, achieving an effective fusion of high-level semantic information and spatial detail information. In addition, we have re-examined the selection criteria for activation and normalization methods, and also refine the network architectures from a spatial domain perspective to release redundant computational loads. Testing on the DRIVE, STARE, and CHASE_DB1 datasets indicates that HRD-Net, with fewer parameters, outperforms existing segmentation methods on several evaluation metrics such as F1, ACC, SE, SP, AUC, and IOU.


Assuntos
Aprendizagem , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Benchmarking , Retina/diagnóstico por imagem , Salários e Benefícios , Processamento de Imagem Assistida por Computador , Algoritmos
2.
J Mater Chem B ; 12(7): 1837-1845, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284228

RESUMO

Biologically produced nanomaterials capable of therapeutic purposes have received increasing interest in tumor therapy because of their intrinsic biocompatibility. In this study, we made cuttlefish ink (extracted from cuttlefish) and protoporphyrin IX (PpIX) nanoconjugates (CIPs) where PpIX was an endogenous organic compound. In the case of CIPs, PpIX could be triggered by ultrasound (US) for sonodynamic therapy (SDT), and the cuttlefish ink could be excited by a near-infrared laser for photothermal therapy (PTT). Thereafter, tumor growth was greatly inhibited through synergistic SDT-PTT in comparison to single SDT or PTT. In addition, in vivo administration of CIPs showed no noticeable side effects for mouse blood and chief organs, providing an effective strategy for developing biologically produced biomaterials and using them for biotherapy.


Assuntos
Neoplasias , Protoporfirinas , Terapia por Ultrassom , Animais , Camundongos , Nanoconjugados , Tinta , Terapia Fototérmica , Terapia Biológica , Neoplasias/terapia
3.
J Colloid Interface Sci ; 660: 1021-1029, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295540

RESUMO

Multifunctional nanomaterials with potential applications in both bioimaging and photodynamic-sonodynamic therapy have great advantages in cancer theranostic, but the design and preparation of "all-in-one" type of multifunctional nanomaterials with single component remains challenging. Herein the "all-in-one" type of Mn-PpIX (Protoporphyrin IX) coordination polymers (MnPPs) was reported as efficient nano-photo/sonosensitizers. The MnPPs had an average size of âˆ¼ 110 nm. Upon light/US (ultrasound) irradiation for 5 min, 61.8 % (light) and 32.4 % (US) of DPBF (1.3-diphenyl isobenzofuran) was found to be oxidized by MnPPs, which showed effective ROS (reactive oxygen species) generation for photodynamic/sonodynamic therapy (PDT/SDT). In addition, MnPPs revealed excellent biosafety and could be engulfed by cells to produce intracellular ROS under light/US excitation for efficient killing tumor cells. When MnPPs was injected into mice, the tumor could be monitored via MRI (magnetic resonance imaging). In addition, tumor growth could be significantly inhibited by the synergistic PDT-SDT. Therefore, the present study not only represents MnPPs as an "all-in-one" type of multifunctional nanomaterials for MRI-guided PDT-SDT therapy, but also provides some insights for designing other PpIX-related molecules with the similar structure for bioapplication.


Assuntos
Neoplasias , Porfirinas , Terapia por Ultrassom , Camundongos , Animais , Terapia por Ultrassom/métodos , Espécies Reativas de Oxigênio , Polímeros/farmacologia , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
4.
Adv Mater ; 36(18): e2312868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38241728

RESUMO

The intelligent construction of non-noble metal materials that exhibit reversible oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with bifunctional electrocatalytic performance is greatly coveted in the realm of zinc-air batteries (ZABs). Herein, a crafted structure-amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived N, S, P co-doped carbon sphere (A-MnO2/NSPC) is designed using a self-doped pyrolysis coupled with an in situ encapsulation strategy. The customized A-MnO2/NSPC-2 demonstrates a superior bifunctional electrocatalytic performance, confirmed by a small ΔE index of 0.64 V for ORR/OER. Experimental investigations, along with density functional theory calculations validate that predesigned amorphous MnO2 surface defects and abundant heteroatom catalytic active sites collectively enhance the oxygen electrocatalytic performance. Impressively, the A-MnO2/NSPC-based rechargeable liquid ZABs show a large open-circuit potential of 1.54 V, an ultrahigh peak power density of 181 mW cm-2, an enormous capacity of 816 mAh g-1, and a remarkable stability for more than 1720 discharging/charging cycles. Additionally, the assembled flexible all-solid-state ZABs also demonstrate outstanding cycle stability, surpassing 140 discharging/charging cycles. Therefore, this highly operable synthetic strategy offers substantial understanding in the development of magnificent bifunctional electrocatalysts for various sustainable energy conversions and beyond.

5.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37873955

RESUMO

Accurate Force Fields (FFs) are essential for Molecular Dynamics (MD) simulations of the dynamics of realistic materials in terms of atomic-level interactions. The FF parameters of short-range valence interactions can be derived through Quantum Mechanical (QM) calculations on model systems practical for QM (<300 atoms). Similarly, the dynamic electrostatic interactions can be described with methods such as QEq or PQEq that allow charges and polarization to adjust dynamically. However, accurately extracting long-range van der Waals (vdW) interactions from QM calculations poses challenges due to the absence of a definitive method to distinguish between the different energetic components of electrostatics, polarization, vdW, hydrogen bonding, and valence interactions. To do this we use the Perdew-Burke-Ernzerhof flavor of Density Functional Theory, including empirical D3 vdW corrections, to predict the Equation of State for each element (keeping any covalent bonds fixed), from which we obtain the two-body vdW nonbond potential. Here, we extend these calculations to include non-bonded parameters for the N and O columns of the periodic table so that we now describe columns 15 (N), 16 (O), 17 (F), and 18 (Ne) of the periodic table. For these 20 elements, we find that the two-body vdW potentials can all be mapped to a single universal two-body curve, with just three scaling parameters: Re, De, and L. We refer to this as the Universal NonBond (UNB) potential. We expect this to be useful for new MD simulations and a helpful starting point to obtain UNB parameters for the remainder of the periodic table.

6.
J Org Chem ; 88(1): 384-394, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36516991

RESUMO

The development of a convergent route to the NLRP3 (nucleotide-binding domain and leucine-rich repeat-containing protein 3) agonist BMS-986299 is reported. The synthesis relies on a key Miyaura borylation and a tandem Suzuki-Miyaura coupling between an iodoimidazole and an o-aminochloroarene, followed by acid-mediated cyclization to afford the aminoquinoline core. The subsequent Boc cleavage and regioselective acylation afford the target compound. Two routes to the iodoimidazole intermediate are presented, along with the synthesis of the o-aminochloroarene via Negishi coupling. The convergent six-step route leads to an 80% reduction in process mass intensity compared to the linear enabling synthesis.


Assuntos
Imidazóis , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ciclização , Acilação
7.
Am J Transl Res ; 14(8): 5598-5604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105036

RESUMO

OBJECTIVE: To explore the occurrence and dynamic trends of psychological stress responses of medical staff experiencing workplace violence at different time points. METHODS: A longitudinal study of 23 medical workers who experienced workplace violence was conducted. The perceived stress scale (PSS-4), posttraumatic stress disorder checklist for DSM-5 (PCL-5), and hospital anxiety and depression scale (HADS) were used to measure the medical workers' psychological perception of pressure, posttraumatic stress symptoms, anxiety, and depression at the time of exposure to violence, at 1 month, 2 months, and 4 months after exposure in the workplace, respectively. Repeated measures analysis of variance was applied to analyze psychological stress response and temporal effect. Factors influencing psychological stress responses were analyzed. RESULTS: The scores of PSS-4, PCL-5, HADS-anxiety, and HADS-depression of medical staff exposed to violence began to increase at the time of exposure, peaked 1 month after exposure, and gradually decreased 2 months and 4 months after exposure (all P<0.05). The main influencing factors were being nurses, physical violence, working years ≤5, and being female. CONCLUSION: Effective interventions for medical staff should be made up to 1 month after exposure to workplace violence when the psychological stress responses are the highest.

8.
Polymers (Basel) ; 14(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683974

RESUMO

Studies of the interfacial behavior of pure aqueous nanoparticles have been limited due tothe difficulty of making contaminant-free nanoparticles while also providing narrow size distribution. Colloidal unimolecular polymers (CUPs) are a new type of single-chain nanoparticle with a particle size ranging from 3 to 9 nm, which can be produced free of surfactants and volatile organic contents (VOCs). CUP particles of different sizes and surface charges were made. The surface tension behavior of these CUP particles in water was studied using a maximum bubble pressure tensiometer. The equilibrium surface tension decreased with increasing concentration and the number of charges present on the surface of the CUP particles influences the magnitude of the interfacial behavior. The effect of electrostatic repulsion between the particles on the surface tension was related. At higher concentrations, surface charge condensation started to dominate the surface tension behavior. The dynamic surface tension of CUP particles shows the influence of the diffusion of the particles to the interface on the relaxation time. The relaxation time of the CUP polymer was 0.401 s, which is closer to the diffusion-based relaxation time of 0.133s for SDS (sodium dodecyl sulfate).

9.
Polymers (Basel) ; 14(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567078

RESUMO

Colloidal unimolecular polymer (CUP) particles were made using polymers with different ratios of hydrophobic and hydrophilic monomers via a self-organization process known as water reduction. The water-reduction process and the collapse of the polymer chain to form a CUP were tracked using viscosity measurements as a function of composition. A vibration viscometer, which allowed for viscosity measurement as the water was being added during the water-reduction process, was utilized. The protocol was optimized and tested for factors such as temperature control, loss of material, measurement stability while stirring, and changes in the solution volume with the addition of water. The resulting viscosity curve provided the composition of Tetrahydrofuran (THF)/water mixture that triggers the collapse of a polymer chain into a particle. Hansen as well as dielectric parameters were related to the polymer composition and percentage v/v of THF/water mixture at the collapse point. It was observed that the collapse of the polymer chain occurred when the water/THF composition was at a water volume of between 53.8 to 59.3% in the solvent mixture.

10.
J Colloid Interface Sci ; 615: 38-49, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35124505

RESUMO

Multimodal therapy has attracted increasing interests in tumor treatment due to its high anti-cancer efficacy, and the key is to develop multifunctional nanoagents. The classic multifunctional nanoagents are made up of expensive and complex components, leading to limited practical applications. To solve these problems, we have developed the polyethylene glycol (PEG) coated hollow Cu9S8 nanoparticles (H-Cu9S8/PEG NPs), whose H-Cu9S8 component exhibits the photothermal effect for near-infrared (NIR) photothermal therapy (PTT), the Fenton-like catalytic activity for chemodynamic therapy (CDT), and the drug-loading capacity for chemotherapy. The H-Cu9S8/PEG NPs with a diameter of âˆ¼ 100 nm have been synthesized by sulfurizing cuprous oxide (Cu2O) nanoparticles through "Kirkendall effect", and they exhibit high photothermal conversion efficiency of 40.9%. Meanwhile, the H-Cu9S8/PEG NPs are capable of a Fenton-like reaction, which can be augmented by 2 times under the NIR irradiation. The hollow structure gives the H-Cu9S8/PEG high doxorubicin (DOX) loading capacity (21.1%), and then the DOX release can be further improved by pH and photothermal effect. When the DOX@H-Cu9S8/PEG dispersions are injected into the tumor-bearing mice, the tumor growth can be efficiently inhibited due to the synergistic effect of photothermally-augmented CDT-chemo therapy. Therefore, the DOX@H-Cu9S8/PEG can serve as a multifunctional nanoplatform for photothermally-augmented CDT-chemo treatment of malignant tumors.


Assuntos
Nanopartículas , Fototerapia , Animais , Doxorrubicina , Camundongos , Nanopartículas/química , Piperidinas , Polietilenoglicóis/química
11.
J Colloid Interface Sci ; 614: 147-159, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091144

RESUMO

Sonodynamic therapy (SDT), which fights against cancers by producing cytotoxic singlet oxygen (1O2) under ultrasound irradiation, has shown great potential in cancer treatment due to its noninvasiveness and deep tissue penetration. However, their practical application suffers from some limitations, such as tumor hypoxia and the inefficient generation of 1O2. To solve these problems, we have prepared the nanoarchitectonics based on metal-organic frameworks (MOFs) containing platinum (Pt) nanozymes with improved oxygen evolution for the enhanced sonodynamic/chemo-therapy effects. As a model of MOF, porous coordination network-224 (PCN-224) nanoparticles with the size of 100 nm have been prepared through coordinating tetrakis (4-carboxyphenyl) porphyrin (TCPP) with Zr(IV) cations during a solvothermal process, and they are then decorated with Pt nanoclusters (∼1.5 nm) by in-situ reduction. After being surface-modified with the phosphatidylcholine and loading DOX, the DOX@PCN-224/Pt nanoplatforms exhibit a good H2O2 catalytic activity, 1O2 generation ability, efficient loading (26.3%) of DOX, and pH-responsive releasing ability. When the DOX@PCN-224/Pt dispersions are intratumorally injected into mice, they can convert the endogenous H2O2 into oxygen for alleviating tumor hypoxia. Moreover, the generated oxygen can further enhance the sensitivity of SDT and tumor cells to chemotherapy by down-regulating the expression of hypoxia-inducible factor α, resulting in the enhanced SDT and chemotherapeutic effect. With these merits, the combination of sonodynamic and chemotherapy of DOX@PCN-224/Pt remarkably inhibits the tumor growth compared to chemotherapy or SDT alone. Therefore, the DOX@PCN-224/Pt nanoplatform serves as an efficient nanoarchitectonics for enhanced sonodynamic/chemo-therapy.


Assuntos
Estruturas Metalorgânicas , Terapia por Ultrassom , Animais , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Estruturas Metalorgânicas/farmacologia , Camundongos , Oxigênio , Platina/farmacologia
12.
Trends Microbiol ; 30(1): 79-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34103228

RESUMO

Insects are an incredibly diverse group of animals with species that benefit and harm natural ecosystems, agriculture, and human health. Many insects have consequential associations with microbes: bacterial symbionts may be embedded in different insect tissues and cell types, inherited across insect generations, and required for insect survival and reproduction. Genetically engineering insect symbionts is key to understanding and harnessing these associations. We summarize different types of insect-bacteria relationships and review methods used to genetically modify endosymbiont and gut symbiont species. Finally, we discuss recent studies that use this approach to study symbioses, manipulate insect-microbe interactions, and influence insect biology. Further progress in insect symbiont engineering promises to solve societal challenges, ranging from controlling pests to protecting pollinator health.


Assuntos
Ecossistema , Insetos , Animais , Bactérias/genética , Insetos/microbiologia , Simbiose
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-955686

RESUMO

Objective:To further improve the quality of doctoral dissertations in clinical medicine and stomatology.Methods:Taking the 1 122 experts' comments on the 2016-2018 clinical/stomatological doctoral dissertations of a university, the paper made a statistical analysis from such aspects as the source of topic selection, the type of topic selection, the literature review, paper innovation, writing standards, etc. SPSS 20.0 was used for statistical analysis.Results:The results showed that 61.0% (614/1006) dissertations were selected from applied research and 30% (302/1006) from non project research; 83.9% (941/1122) dissertations were evaluated as good and excellent, and the first three items with poor evaluation were: innovation (3.3%, 37/1122), content (2.2%, 25/1122) and writing standard (0.9%, 10/1122).Conclusion:It is suggested that the school and tutors should make clear the training orientation of clinical/stomatological doctoral graduate students, strengthen the training of their scientific research ability and thesis writing ability, and pay attention to clinical practice training without reducing their academic requirements.

14.
ACS Nano ; 15(12): 19793-19805, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34851096

RESUMO

The phototoxicity of photosensitizers (PSs) is a double-edged sword with one edge beneficial for destroying tumors while the other is detrimental to normal tissues, and the conventional "OFF-ON" strategy provides temporary inhibition so that phototoxicity would come sooner or later due to the inevitable retention and transformation of PSs in vivo. We herein put forward a strategy to convert "double-edged sword" PSs into "single-edged knife" ones with simultaneously persistent phototoxicity inhibition and alternative multiple therapeutical activation. The Chlorin e6 (Ce6) as the PS model directly assembles with Cu2+ ions into nanoscale frameworks (nFs) whose Cu2+-coordination includes both carboxyl groups and a porphyrin ring of Ce6 instead of Fe3+/Mn2+-coordination with only carboxyl groups. Compared to the high phototoxicity of Ce6, the nFs exhibit efficient energy transfer due to the dual-coordination of paramagnetic Cu2+ ions and the aggregation, achieving the persistent and high phototoxicity inhibition rate of >92%. Alternatively, the nFs not only activate a high photoacoustic contrast and near-infrared (NIR)-driven photothermal efficacy (3.5-fold that of free Ce6) due to the aggregation-enhanced nonradiative transition but also initiate tumor microenvironment modulation, structure disassembly, and chemodynamic effect by Cu2+ ions. Given these merits, the nFs achieve long-term biosecurity, no retina injury under sunlight, and a higher therapeutical output than the photodynamic effect of Ce6. This work presents a possibility of converting numerous highly phototoxic porphyrins into safe and efficient ones.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Biosseguridade , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia
15.
Polymers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502905

RESUMO

In this study, four kinds of phospholipase A1-metal (Al/Co/Cu/Mn) hybrid nanostructures were prepared for enhancing the stability of the free PLA1. The formed hybrid complexes were characterized by scanning electron microscope (SEM), Fourier infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The stability and substrate specificity of immobilized enzymes were subsequently determined. After immobilization, the temperature tolerance of PLA1-metal hybrid nanostructures was enhanced. The relative activity of PLA1-Al/Co/Cu hybrid nanostructures remained above 60% at 50 °C, while that of free enzyme was below 5%. The thermal transition temperature measured by differential scanning calorimetry (DSC) was found to increase from 65.59 °C (free enzyme) to 173.14 °C, 123.67 °C, 96.31 °C, and 114.79 °C, referring to PLA1-Cu/Co/Al/Mn hybrid nanostructures, respectively. Additionally, after a storage for fourteen days at 4 °C, the immobilized enzymes could exhibit approximately 60% of the initial activity, while the free PLA1 was inactivated after four days of storage. In brief, using Co2+, Cu2+, Al3+, and Mn2+ as the hybridization materials for immobilization could improve the catalytic properties and stability of the free PLA1, suggesting a promising method for a wider application of PLA1 in many fields such as food, cosmetics, and the pharmaceutical industry.

16.
Adv Healthc Mater ; 10(18): e2100703, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363332

RESUMO

Metal-organic nanomaterials have emerged as promising therapeutic agents to produce reactive oxygen species (ROS) under ultrasound (US) or light irradiation for tumor treatments. However, their relatively large sizes (ranging from tens to hundreds of nanometers) usually lead to low ROS utilization and body metabolism, thus enlarging their long-term toxicity and low therapeutic effect. To solve these shortcomings, herein the ultrasmall Gd3+ -hemoporfin framework nanodots (GdHF-NDs, ≈5 nm) is reported as efficient nano-sonosensitizers. Compared with GdHF aggregation (GdHF-A, ≈400 nm), the ultrasmall GdHF-NDs generate 2.3-fold toxic ROS amount under similar conditions, due to shorter diffusion path and larger relative specific surface area. When the GdHF-NDs dispersion is introvenously injected into tumor-bearing mouse, they are accumulated within tumors to provide high magnetic resonance imaging (MRI) contrast. Under US irradiation, the GdHF-NDs achieve a better sonodynamic therapeutic efficacy for tumors, compared with that from GdHF-A. More importantly, owing to ultrasmall size, most of GdHF-NDs can be rapidly cleared through the renal pathway. Therefore, GdHF-NDs can be used as a biosafety and high-performance sonodynamic agent for cancer theranostics.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Animais , Linhagem Celular Tumoral , Hematoporfirinas , Camundongos , Medicina de Precisão
17.
Angew Chem Int Ed Engl ; 60(43): 23182-23186, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34399005

RESUMO

The 1,4-diacyloxylation of 1,3-cyclohexadiene (CHD) affords valuable stereochemically defined scaffolds for natural product and pharmaceutical synthesis. Existing cis-selective diacyloxylation protocols require superstoichiometric quantities of benzoquinone (BQ) or MnO2 , which limit process sustainability and large-scale application. In this report, reaction development and mechanistic studies are described that overcome these limitations by pairing catalytic BQ with tert-butyl hydroperoxide as the stoichiometric oxidant. Catalytic quantities of bromide enable a switch from trans to cis diastereoselectivity. A catalyst with a 1:2 Pd:Br ratio supports high cis selectivity while retaining good rate and product yield. Further studies enable replacement of BQ with hydroquinone (HQ) as a source of cocatalyst, avoiding the handling of volatile and toxic BQ in large-scale applications.


Assuntos
Acetatos/química , Benzoatos/síntese química , Cicloexenos/síntese química , Hidroquinonas/química , Compostos Organometálicos/química , Catálise , Paládio/química , Estereoisomerismo
18.
Sci Rep ; 11(1): 15495, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326434

RESUMO

In view of the problems of low straw decomposition rates and reduced soil fertility in southern Liaoning, China, we investigated the effects of no-tillage mode (NT), deep loosening + deep rotary tillage mode (PT), rotary tillage mode (RT) and the addition of decomposing agent (the next is called a decomposer) (NT + S, PT + S, RT + S) on the decomposition proportion of straw, respectively, by using the nylon net bag method in combination with 365-day field plot experiments. The decomposition rules of cellulose, hemicellulose and lignin as well as the dynamics of soil organic carbon (SOC), soil microbial biomass carbon (MBC) and soil dissolved organic carbon (DOC) in straw returned to the field for 15, 35, 55, 75, 95, 145 and 365 days were analyzed. The results showed that in the short term, the decomposition of straw was better in both the rotray tillage and deep loosening + deep rotary modes than in the no-tillage mode, and the addition of decomposer significantly promoted the decomposition of straw and the release of carbon from straw, among them, the RT + S treatment had the highest straw decomposition proportion and carbon release proportion in all sampling periods. After a one year experimental cycle, the RT + S treatment showed the highest proportion of cellulose, hemicellulose and lignin decomposition with 35.49%, 84.23% and 85.50%, respectively, and soil SOC, MBC and DOC contents were also higher than the other treatments with an increase of 2.30 g kg-1, 14.22 mg kg-1 and 25.10 mg kg-1, respectively, compared to the pre-experimental soil. Our results show that in the short term, to accelerate the decomposition rate of returned straw and increase the content of various forms of carbon in soil, rotary tillage can be used to return the straw to the field, while also spraying straw decomposer on its surface. This experiment used a new straw decomposer rich in a variety of microorganisms, combined with the comparison of a variety of straw return modes, and in-depth study of straw decomposition effects of cellulose, hemicellulose and lignin. Thus, a scheme that can effectively improve the decomposition rate of straw and the content of various forms of organic carbon in soil within a short period of time was explored to provide theoretical support for the southern Liaoning.

19.
ACS Appl Mater Interfaces ; 13(27): 31440-31451, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34184531

RESUMO

Activatable nanoscale drug delivery systems (NDDSs) are promising in maximizing cancer specificity and anticancer efficacy, and a multifunctional metal-organic nanomaterial is one of the new star NDDSs which requires further exploration. Herein, a novel DOX@MnCPs/PEG NDDSs were constructed by first synthesizing Mn3+-sealed coordination particles (MnCPs), modified with a targeted PEGylated polymer, and then loading anticancer drug doxorubicin (DOX). MnCPs were prepared from the assembly of Mn3+ ions and hematoporphyrin monomethyl ether (HMME) molecules. Furthermore, MnCPs had an average size of ∼100 nm and a large surface area (∼52.6 m2 g-1) and porosity (∼3.6 nm). After the loading of DOX, DOX@MnCPs/PEG exhibited a high DOX-loading efficacy of 27.2%, and they reacted with glutathione (GSH) to confer structural collapse, leading to the production of Mn2+ ions for enhanced magnetic resonance imaging (MRI), free HMME for augmented photodynamic effect, and free DOX for chemotherapy. As a consequence, these DOX@MnCPs/PEG NDDSs after intravenous injection showed efficient tumor homing and then exerted an obvious suppression for tumor growth rate by synergistic photodynamic-chemo therapy in vivo. Importantly, most of the DOX@MnCPs/PEG NDDSs could be gradually cleared through the renal pathway, and the remaining part could slowly be metabolized via the feces, enabling high biosafety. Therefore, this work provides a type of GSH-sensitive NDDS with biosafety, caner specificity, and multifunctionality for high synergistic treatment efficacy.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Glutationa/metabolismo , Manganês/química , Nanoestruturas/química , Fotoquimioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Polietilenoglicóis/química , Segurança
20.
Nutr Metab (Lond) ; 18(1): 48, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952301

RESUMO

BACKGROUND: Caloric restriction (CR) has become increasingly attractive in the treatment of type 2 diabetes mellitus (T2DM) because of the increasingly common high-calorie diet and sedentary lifestyle. This study aimed to evaluate the role of CR in T2DM treatment and further explore its potential molecular mechanisms. METHODS: Sixty male Sprague-Dawley rats were used in this study. The diabetes model was induced by 8 weeks of high-fat diet (HFD) followed by a single dose of streptozotocin injection (30 mg/kg). Subsequently, the diabetic rats were fed HFD at 28 g/day (diabetic control) or 20 g/day (30% CR regimen) for 20 weeks. Meanwhile, normal rats fed a free standard chow diet served as the vehicle control. Body mass, plasma glucose levels, and lipid profiles were monitored. After diabetes-related functional tests were performed, the rats were sacrificed at 10 and 20 weeks, and glucose uptake in fresh muscle was determined. In addition, western blotting and immunofluorescence were used to detect alterations in AKT/AS160/GLUT4 signaling. RESULTS: We found that 30% CR significantly attenuated hyperglycemia and dyslipidemia, leading to alleviation of glucolipotoxicity and thus protection of islet function. Insulin resistance was also markedly ameliorated, as indicated by notably improved insulin tolerance and homeostatic model assessment for insulin resistance (HOMA-IR). However, the improvement in glucose uptake in skeletal muscle was not significant. The upregulation of AKT/AS160/GLUT4 signaling in muscle induced by 30% CR also attenuated gradually over time. Interestingly, the consecutive decrease in AKT/AS160/GLUT4 signaling in white adipose tissue was significantly reversed by 30% CR. CONCLUSION: CR (30%) could protect islet function from hyperglycemia and dyslipidemia, and improve insulin resistance. The mechanism by which these effects occurred is likely related to the upregulation of AKT/AS160/GLUT4 signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...