Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 431, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365506

RESUMO

BACKGROUND: Sepsis has a high mortality rate, which is expensive to treat, and is a major drain on healthcare resources; it seriously impacts the quality of human life. The clinical features of positive or non-positive blood cultures have been reported, but the clinical features of sepsis with different microbial infections and how they contribute to clinical outcomes have not been adequately described. METHODS: We extracted clinical data of septic patients with a single pathogen from the online Medical Information Mart for Intensive Care(MIMIC)-IV database. Based on microbial cultures, patients were classified into Gram-negative, Gram-positive, and fungal groups. Then, we analyzed the clinical characteristics of sepsis patients with Gram-negative, Gram-positive, and fungal infections. The primary outcome was 28-day mortality. The secondary outcomes were in-hospital mortality, the length of hospital stay, the length of ICU stay, and the ventilation duration. In addition, Kaplan-Meier analysis was used for the 28-day cumulative survival rate of patients with sepsis. Finally, we performed further univariate and multivariate regression analyses for 28-day mortality and created a nomogram for predicting 28-day mortality. RESULTS: The analysis showed that bloodstream infections showed a statistically significant difference in survival between Gram-positive and fungal organisms; drug resistance only reached statistical significance for Gram-positive bacteria. Through univariate and multivariate analysis, it was found that both the Gram-negative bacteria and fungi were independent risk factors for the short-term prognosis of sepsis patients. The multivariate regression model showed good discrimination, with a C-index of 0.788. We developed and validated a nomogram for the individualized prediction of 28-day mortality in patients with sepsis. Application of the nomogram still gave good calibration. CONCLUSIONS: Organism type of infection is associated with mortality of sepsis, and early identification of the microbiological type of a patient with sepsis will provide an understanding of the patient's condition and guide treatment.


Assuntos
Infecções por Bactérias Gram-Negativas , Sepse , Humanos , Infecções por Bactérias Gram-Negativas/microbiologia , Estudos Retrospectivos , Sepse/tratamento farmacológico , Prognóstico , Bactérias Gram-Negativas , Unidades de Terapia Intensiva
2.
Anim Microbiome ; 5(1): 20, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005679

RESUMO

BACKGROUND: The gut microbiota of fish confers various effects on the host, including health, nutrition, metabolism, feeding behaviour, and immune response. Environment significantly impacts the community structure of fish gut microbiota. However, there is a lack of comprehensive research on the gut microbiota of bighead carp in culture systems. To demonstrate the impact of culture systems on the gut microbiome and metabolome in bighead carp and investigate a potential relationship between fish muscle quality and gut microbiota, we conducted a study using 16S ribosomal ribonucleic acid sequencing, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry techniques on bighead carp in three culture systems. RESULTS: Our study revealed significant differences in gut microbial communities and metabolic profiles among the three culture systems. We also observed conspicuous changes in muscle structure. The reservoir had higher gut microbiota diversity indices than the pond and lake. We detected significant differences in phyla and genera, such as Fusobacteria, Firmicutes, and Cyanobacteria at the phylum level, Clostridium sensu stricto 1, Macellibacteroides, Blvii28 wastewater sludge group at the genus level. Multivariate statistical models, including principal component analysis and orthogonal projections to latent structures-discriminant analysis, indicated significant differences in the metabolic profiles. Key metabolites were significantly enriched in metabolic pathways involved in "arginine biosynthesis" and "glycine, serine, and threonine metabolism". Variation partitioning analysis revealed that environmental factors, such as pH, ammonium nitrogen, and dissolved oxygen, were the primary drivers of differences in microbial communities. CONCLUSIONS: Our findings demonstrate that the culture system significantly impacted the gut microbiota of bighead carp, resulting in differences in community structure, abundance, and potential metabolic functions, and altered the host's gut metabolism, especially in pathways related to amino acid metabolism. These differences were influenced substantially by environmental factors. Based on our study, we discussed the potential mechanisms by which gut microbes affect muscle quality. Overall, our study contributes to our understanding of the gut microbiota of bighead carp under different culture systems.

3.
ACS Appl Polym Mater ; 4(9): 6592-6601, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36119407

RESUMO

Polylactic acid (PLA) is a biopolymer that has potential for use in food packaging applications; however, its low crystallinity and poor gas barrier properties limit its use. This study aimed to increase the understanding of the structure property relation of biopolymer blends and their nanocomposites. The crystallinity of the final materials and their effect on barrier properties was studied. Two strategies were performed: first, different concentrations of poly(hydroxybutyrate) (PHB; 10, 25, and 50 wt %) were compounded with PLA to facilitate the PHB spherulite development, and then, for further increase of the overall crystallinity, glycerol triacetate (GTA) functionalized chitin nanocrystals (ChNCs) were added. The PLA:PHB blend with 25 wt % PHB showed the formation of many very small PHB spherulites with the highest PHB crystallinity among the examined compositions and was selected as the matrix for the ChNC nanocomposites. Then, ChNCs with different concentrations (0.5, 1, and 2 wt %) were added to the 75:25 PLA:PHB blend using the liquid-assisted extrusion process in the presence of GTA. The addition of the ChNCs resulted in an improvement in the crystallization rate and degree of PHB crystallinity as well as mechanical properties. The nanocomposite with the highest crystallinity resulted in greatly decreased oxygen (O) and carbon dioxide (CO2) permeability and increased the overall mechanical properties compared to the blend with GTA. This study shows that the addition ChNCs in PLA:PHB can be a possible way to reach suitable gas barrier properties for food packaging films.

4.
Transl Psychiatry ; 12(1): 180, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504870

RESUMO

The long-term health consequences of the COVID-19 pandemic on health care workers (HCWs) are largely unclear. The purpose of the present study was to investigate the development of posttraumatic stress disorder (PTSD) in HCWs in a longitudinal manner. Additionally, we further explored the role of risk perception in the evolution of PTSD over time based on a one-year follow-up study. HCWs were recruited from hospitals in Guangdong, China. Demographic information, the PTSD checklist for DSM-5 (PCL-5) and the risk perception questionnaire were obtained online at two different time points: May to June 2020 (T1), with 317 eligible responses, and June 2021 (T2), with 403 eligible responses. Seventy-four HCWs participated in the survey at both T1 and T2. The results revealed that (1) the PTSD prevalence rate in the HCWs (cut-off = 33) increased from 10.73% at T1 to 20.84% at T2, and the HCWs reported significantly higher PTSD scores at T2 than at T1 (p < 0.001); (2) risk perception was positively correlated with PTSD (p < 0.001); and (3) PTSD at T1 could significantly positively predict PTSD at T2 (ß = 2.812, p < 0.01), and this longitudinal effect of PTSD at T1 on PTSD at T2 was mediated by risk perception at T2 (coefficient = 0.154, 95% CI = 0.023 to 0.297). Our data provide a snapshot of the worsening of HCWs' PTSD along with the repeated pandemic outbreaks and highlight the important role of risk perception in the development of PTSD symptoms in HCWs over time.


Assuntos
COVID-19 , Transtornos de Estresse Pós-Traumáticos , Seguimentos , Pessoal de Saúde , Humanos , Pandemias , Percepção , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/epidemiologia
5.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269306

RESUMO

In this study, the possibility of adding nanocellulose and its dispersion to polyamide 6 (PA6), a polymer with a high melting temperature, is investigated using melt extrusion. The main challenges of the extrusion of these materials are achieving a homogeneous dispersion and avoiding the thermal degradation of nanocellulose. These challenges are overcome by using an aqueous suspension of never-dried nanocellulose, which is pumped into the molten polymer without any chemical modification or drying. Furthermore, polyethylene glycol is tested as a dispersant for nanocellulose. The dispersion, thermal degradation, and mechanical and viscoelastic properties of the nanocomposites are studied. The results show that the dispersant has a positive impact on the dispersion of nanocellulose and that the liquid-assisted melt compounding does not cause the degradation of nanocellulose. The addition of only 0.5 wt.% nanocellulose increases the stiffness of the neat polyamide 6 from 2 to 2.3 GPa and shifts the tan δ peak toward higher temperatures, indicating an interaction between PA6 and nanocellulose. The addition of the dispersant decreases the strength and modulus but has a significant effect on the elongation and toughness. To further enhance the mechanical properties of the nanocomposites, solid-state drawing is used to create an oriented structure in the polymer and nanocomposites. The orientation greatly improves its mechanical properties, and the oriented nanocomposite with polyethylene glycol as dispersant exhibits the best alignment and properties: with orientation, the strength increases from 52 to 221 MPa, modulus from 1.4 to 2.8 GPa, and toughness 30 to 33 MJ m-3 in a draw ratio of 2.5. This study shows that nanocellulose can be added to PA6 by liquid-assisted extrusion with good dispersion and without degradation and that the orientation of the structure is a highly-effective method for producing thermoplastic nanocomposites with excellent mechanical properties.

6.
J Fish Biol ; 100(2): 366-377, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34751443

RESUMO

Pigment cell composition, pigment content, tyrosinase content and activity analysis were investigated on three kinds of loaches Misgurnus anguillicaudatus: big blackspot loaches (BBL), small blackspot loaches (SBL) and non-blackspot loaches (NBL), from Poyang Lake. Results showed that there were three types of skin pigment cells, namely melanophores, xanthophores and iridophores. Melanophores in dorsum were more than those in abdomen. Melanophore cytosomes in BBL were larger than those in SBL and NBL, and melanosomes were the largest in stage four. The melanophores in dorsal skin of SBL or NBL were small cell bodies, spindle-like and in chain distribution. There was an extremely significant difference in melanin content in BBL between the dorsum and abdomen (P < 0.01). There were no significant differences in melanin abdominal content, lutein and carotenoid contents among three kinds of loaches (P > 0.05). In dorsal skin, tyrosinase content was the highest in BBL, and it was significantly lower in NBL than in BBL and SBL (P < 0.01). This study reveals the differences in pigment and tyrosinase content in three kinds of loaches and provides a theoretical basis for further study of the mechanism of black spot formation.


Assuntos
Cipriniformes , Animais , Lagos , Melanóforos , Monofenol Mono-Oxigenase , Pigmentação
7.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34947658

RESUMO

The orientation of polymer composites is one way to increase the mechanical properties of the material in a desired direction. In this study, the aim was to orient chitin nanocrystal (ChNC)-reinforced poly(lactic acid) (PLA) nanocomposites by combining two techniques: calendering and solid-state drawing. The effect of orientation on thermal properties, crystallinity, degree of orientation, mechanical properties and microstructure was studied. The orientation affected the thermal and structural behavior of the nanocomposites. The degree of crystallinity increased from 8% for the isotropic compression-molded films to 53% for the nanocomposites drawn with the highest draw ratio. The wide-angle X-ray scattering results confirmed an orientation factor of 0.9 for the solid-state drawn nanocomposites. The mechanical properties of the oriented nanocomposite films were significantly improved by the orientation, and the pre-orientation achieved by film calendering showed very positive effects on solid-state drawn nanocomposites: The highest mechanical properties were achieved for pre-oriented nanocomposites. The stiffness increased from 2.3 to 4 GPa, the strength from 37 to 170 MPa, the elongation at break from 3 to 75%, and the work of fracture from 1 to 96 MJ/m3. This study demonstrates that the pre-orientation has positive effect on the orientation of the nanocomposites structure and that it is an extremely efficient means to produce films with high strength and toughness.

8.
J Immunol ; 207(8): 2118-2128, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507947

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysfunctional host response to infection. Neutrophils play a protective role by releasing antibacterial proteins or by phagocytizing bacteria. However, excess neutrophils can induce tissue damage. Recently, a novel intercellular communication pathway involving extracellular vesicles (EVs) has garnered considerable attention. However, whether EVs secreted by macrophages mediate neutrophil recruitment to infected sites has yet to be studied. In this study, we assessed the chemotactic effect of EVs isolated from mouse Raw264.7 macrophages on mouse neutrophils and found that CXCL2 was highly expressed in these EVs. By regulating CXCL2 in Raw264.7 macrophages, we found that CXCL2 on macrophage EVs recruited neutrophils in vitro and in vivo. The CXCL2 EVs activated the CXCR2/PKC/NOX4 pathway and induced tissue damage. This study provides information regarding the mechanisms underlying neutrophil recruitment to tissues and proposes innovative strategies and targets for the treatment of sepsis.


Assuntos
Quimiocina CXCL2/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/imunologia , NADPH Oxidase 4/metabolismo , Neutrófilos/imunologia , Proteína Quinase C/metabolismo , Sepse/imunologia , Animais , Ceco/cirurgia , Modelos Animais de Doenças , Doenças do Sistema Imunitário , Transtornos Leucocíticos , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Transdução de Sinais
9.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361717

RESUMO

The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film's optical properties; microstructure; migration of the additive and nanocomposites' thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.


Assuntos
Antibacterianos/síntese química , Quitina/química , Citratos/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Antibacterianos/farmacologia , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Reologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Resistência à Tração , Viscosidade
10.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800162

RESUMO

Various carbon materials have been developed for energy storage applications to address the increasing energy demand in the world. However, the environmentally friendly, renewable, and nontoxic bio-based carbon resources have not been extensively investigated towards high-performance energy storage materials. Here, we report an anisotropic, hetero-porous, high-surface area carbon aerogel prepared from renewable resources achieving an excellent electrical double-layer capacitance. Two different green, abundant, and carbon-rich lignins which can be extracted from various biomasses, have been selected as raw materials, i.e., kraft and soda lignins, resulting in clearly distinct physical, structural as well as electrochemical characteristics of the carbon aerogels after carbonization. The obtained green carbon aerogel based on kraft lignin not only demonstrates a competitive specific capacitance as high as 163 F g-1 and energy density of 5.67 Wh kg-1 at a power density of 50 W kg-1 when assembled as a two-electrode symmetric supercapacitor, but also shows outstanding compressive mechanical properties. This reveals the great potential of the carbon aerogels developed in this study for the next-generation energy storage applications requiring green and renewable resources, lightweight, robust storage ability, and reliable mechanical integrity.

11.
Nanomaterials (Basel) ; 11(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672079

RESUMO

Finding renewable alternatives to the commonly used reinforcement materials in composites is attracting a significant amount of research interest. Nanocellulose is a promising candidate owing to its wide availability and favorable properties such as high Young's modulus. This study addressed the major problems inherent to cellulose nanocomposites, namely, controlling the fiber structure and obtaining a sufficient interfacial adhesion between nanocellulose and a non-hydrophilic matrix. Unidirectionally aligned cellulose nanofiber filament mats were obtained via ice-templating, and chemical vapor deposition was used to cover the filament surfaces with an aminosilane before impregnating the mats with a bio-epoxy resin. The process resulted in cellulose nanocomposites with an oriented structure and a strong fiber-matrix interface. Diffuse reflectance infrared Fourier transform and X-ray photoelectron spectroscopy studies revealed the presence of silane on the filaments. The improved interface, resulting from the surface treatment, was observable in electron microscopy images and was further confirmed by the significant increase in the tan delta peak temperature. The storage modulus of the matrix could be improved up to 2.5-fold with 18 wt% filament content and was significantly higher in the filament direction. Wide-angle X-ray scattering was used to study the orientation of cellulose nanofibers in the filament mats and the composites, and the corresponding orientation indices were 0.6 and 0.53, respectively, indicating a significant level of alignment.

12.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672280

RESUMO

The use of bio-based residues is one of the key indicators towards sustainable development goals. In this work, bacterial cellulose, a residue from the fermentation of kombucha tea, was tested as a reinforcing nanofiber network in an emulsion-polymerized poly(methyl methacrylate) (PMMA) matrix. The use of the nanofiber network is facilitating the formation of nanocomposites with well-dispersed nanofibers without using organic solvents or expensive methodologies. Moreover, the bacterial cellulose network structure can serve as a template for the emulsion polymerization of PMMA. The morphology, size, crystallinity, water uptake, and mechanical properties of the kombucha bacterial cellulose (KBC) network were studied. The results showed that KBC nanofibril diameters were ranging between 20-40 nm and the KBC was highly crystalline, >90%. The 3D network was lightweight and porous material, having a density of only 0.014 g/cm3. Furthermore, the compressed KBC network had very good mechanical properties, the E-modulus was 8 GPa, and the tensile strength was 172 MPa. The prepared nanocomposites with a KBC concentration of 8 wt.% were translucent with uniform structure confirmed with scanning electron microscopy study, and furthermore, the KBC network was homogeneously impregnated with the PMMA matrix. The mechanical testing of the nanocomposite showed high stiffness compared to the neat PMMA. A simple simulation of the tensile strength was used to understand the limited strain and strength given by the bacterial cellulose network. The excellent properties of the final material demonstrate the capability of a residue of kombucha fermentation as an excellent nanofiber template for use in polymer nanocomposites.

13.
Clin Psychol Psychother ; 28(5): 1146-1159, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33592682

RESUMO

The aim of current study was to investigate risk perception of COVID-19 pandemic, sleep quality and time change of leisure activity and their correlations with posttraumatic stress disorder (PTSD) in healthcare workers (HCWs) from four designated hospitals in China. Medical staffs (n = 317) from three designated hospitals in Guangdong Province and one designated hospital in Guangxi Province were surveyed on their demographic information, sleep quality and time change of leisure activity, risk perception of pandemic and PTSD symptoms (by using PTSD checklist for DSM-5 (PCL-5)). Hierarchical regression and structural equation model (SEM) were used to examine the correlated factors of PTSD. The prevalence of high level of PTSD symptoms (PCL-5 > =33, a probable diagnosis of PTSD) was 10.7%. Regression analysis found that risk perception (dread: ß = 0.142, p < 0.01; familiarity: ß = 0.203, p < 0.01), sleep quality (ß = 0.250, p < 0.001), time change of leisure activity (ß = -0.179, p < 0.01), were independently correlated with PTSD severity, which was further confirmed by SEM. Locations of COVID-19-related hazards were significant different in cognitive map of risk perception between groups with high and low levels of PTSD symptoms. Risk perception of COVID-19 pandemic influenced PTSD symptoms in HCWs. Adequate time for leisure activity and good sleep quality protected some HCWs against PTSD symptoms under the influence of pandemic. More researches were warranted to understand the path from pre-factors of risk perception to its psychological consequences among HCWs.


Assuntos
COVID-19 , Transtornos de Estresse Pós-Traumáticos , China/epidemiologia , Estudos Transversais , Pessoal de Saúde , Hospitais , Humanos , Pandemias , Percepção , SARS-CoV-2 , Transtornos de Estresse Pós-Traumáticos/epidemiologia
14.
Front Chem ; 8: 655, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062631

RESUMO

Poly(vinyl alcohol) (PVA) hydrogels produced using the freeze-thaw method have attracted attention for a long time since their first preparation in 1975. Due to the importance of polymer intrinsic features and the advantages associated with them, they are very suitable for biomedical applications such as tissue engineering and drug delivery systems. On the other hand, there is an increasing interest in the use of biobased additives such as cellulose nanocrystals, CNC. This study focused on composite hydrogels which were produced by using different concentrations of PVA (5 and 10%) and CNC (1 and 10 wt.%), also, pure PVA hydrogels were used as references. The main goal was to determine the impact of both components on mechanical, thermal, and water absorption properties of composite hydrogels as well as on morphology and initial water content. It was found that PVA had a dominating effect on all hydrogels. The effect of the CNC addition was both concentration-dependent and case-dependent. As a general trend, addition of CNC decreased the water content of the prepared hydrogels, decreased the crystallinity of the PVA, and increased the hydrogels compression modulus and strength to some extent. The performance of composite hydrogels in a cyclic compression test was studied; the hydrogel with low PVA (5) and high CNC (10) content showed totally reversible behavior after 10 cycles.

15.
Polymers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764421

RESUMO

The aim of this study was to investigate the effect of recycling on polypropylene (PP) and wood-fiber thermoplastic composites (WPCs) using a co-rotating twin-screw extruder. After nine extrusion passes microscopy studies confirmed that the fiber length decreased with the increased number of recycling passes but the increased processing time also resulted in excellent dispersion and interfacial adhesion of the wood fibers in the PP matrix. Thermal, rheological, and mechanical properties were studied. The repeated extrusion passes had minimal effect on thermal behavior and the viscosity decreased with an increased number of passes, indicating slight degradation. The recycling processes had an effect on the tensile strength of WPCs while the effect was minor on the PP. However, even after the nine recycling passes the strength of WPC was considerably better (37 MPa) compared to PP (28 MPa). The good degree of property retention after recycling makes this recycling strategy a viable alternative to discarding the materials. Thus, it has been demonstrated that, by following the most commonly used extrusion process, WPCs can be recycled several times and this methodology can be industrially adapted for the manufacturing of recycled products.

16.
Polymers (Basel) ; 12(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32214000

RESUMO

The crystalline phase of poly(lactic acid) (PLA) has crucial effects on its own properties and nanocomposites. In this study, the isothermal crystallization of PLA, triethyl citrate-plasticized PLA (PLA-TEC), and its nanocomposite with chitin nanocrystals (PLA-TEC-ChNC) at different temperatures and times was investigated, and the resulting properties of the materials were characterized. Both PLA and PLA-TEC showed extremely low crystallinity at isothermal temperatures of 135, 130, 125 °C and times of 5 or 15 min. In contrast, the addition of 1 wt % of ChNCs significantly improved the crystallinity of PLA under the same conditions owing to the nucleation effect of the ChNCs. The samples were also crystallized at 110 °C to reach their maximal crystallinity, and PLA-TEC-ChNC achieved 48% crystallinity within 5 min, while PLA and PLA-TEC required 40 min to reach a similar level. Moreover, X-ray diffraction analysis showed that the addition of ChNCs resulted in smaller crystallite sizes, which further influenced the barrier properties and hydrolytic degradation of the PLA. The nanocomposites had considerably lower barrier properties and underwent faster degradation compared to PLA-TEC110. These results confirm that the addition of ChNCs in PLA leads to promising properties for packaging applications.

17.
ACS Appl Mater Interfaces ; 12(6): 7432-7441, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31961641

RESUMO

In current times, CO2 capture and lightweight energy storage are receiving significant attention and will be vital functions in next-generation materials. Porous carbonaceous materials have great potential in these areas, whereas most of the developed carbon materials still have significant limitations, such as nonrenewable resources, complex and costly processing, or the absence of tailorable structure. In this study, a new strategy is developed for using the currently underutilized lignin and cellulose nanofibers, which can be extracted from renewable resources to produce high-performance multifunctional carbon aerogels with a tailorable, anisotropic pore structure. Both the macro- and microstructure of the carbon aerogels can be simultaneously controlled by carefully tuning the weight ratio of lignin to cellulose nanofibers in the precursors, which considerably influences their final porosity and surface area. The designed carbon aerogels demonstrate excellent performance in both CO2 capture and capacitive energy storage, and the best results exhibit a CO2 adsorption capacity of 5.23 mmol g-1 at 273 K and 100 kPa and a specific electrical double-layer capacitance of 124 F g-1 at a current density of 0.2 A g-1, indicating that they have great future potential in the relevant applications.

18.
J Gastroenterol Hepatol ; 35(6): 1069-1077, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31860730

RESUMO

BACKGROUND AND AIMS: Emerging evidence suggests aldosterone (aldo) and NLRP3 inflammasome are important factors for HSC activation and liver fibrosis. However, the interaction between aldo and NLRP3 inflammasome in HSC activation and liver fibrosis remains largely unknown. The aim of this study is to investigate the relationship between aldo and NLRP3 inflammasome in liver fibrosis. METHODS: Serum and liver specimens collected from 40 patients with or without liver fibrosis were used to test the level of aldo and NLRP3. Primary HSC isolated from C57BL/6 mice were treated with aldo, and the effects of aldo on NLRP3 inflammasome and HSC activation were detected in vitro. Two animal models were used to verify the effect of aldo on liver fibrosis in vivo: hyperaldosteronism model was established in wild-type and NLRP3 knockout (NLRP3-/- ) mice by micro-pump, and liver fibrosis mouse model was built by tetrachloromethane (CCl4 ). RESULTS: Patients with liver fibrosis showed higher aldo levels and increased NLRP3 expression in liver. In vitro, aldo induced the activation of primary mouse HSCs by promoting the expression and assembly of NLRP3 inflammasome. In vivo, NLRP3 knockout could alleviate the liver fibrosis induced by aldo in mice. In addition, treatment with spironolactone (spi) could inhibit the NLRP3 expression, HSC activation, and liver fibrosis induced by CCl4 . CONCLUSIONS: Aldo promotes the activation of HSCs and liver fibrosis through NLRP3 inflammasome relative pathways. Intervention of aldo and NLRP3 inflammasome-related pathways may provide a promising strategy for treatment of liver fibrosis.


Assuntos
Aldosterona/metabolismo , Aldosterona/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica , Células Estreladas do Fígado/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aldosterona/genética , Animais , Células Cultivadas , Células Estreladas do Fígado/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Regulação para Cima/genética
19.
Biomacromolecules ; 19(10): 4075-4083, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30130395

RESUMO

Multifunctional lightweight, flexible, yet strong polymer-based nanocomposites are highly desired for specific applications. However, the control of orientation and dispersion of reinforcing nanoparticles and the optimization of the interfacial interaction still pose substantial challenges in nanocellulose-reinforced polymer composites. In this study, poly(ethylene glycol) (PEG)-grafted cellulose nanofibers have demonstrated much better dispersion in a poly(lactic acid) (PLA) matrix as compared to unmodified nanocellulose. Through a uniaxial drawing method, aligned PLA/nanocellulose nanocomposites with high strength, high toughness, and unique optical behavior can be obtained. With the incorporation of 0.1 wt % of the PEG-grafted cellulose nanofibers in PLA, the ultimate strength of the aligned nanocomposite reaches 343 MPa, which is significantly higher than that of other aligned PLA-based nanocomposites reported previously. Moreover, its ultimate strength and toughness are enhanced by 39% and 70%, respectively, as compared to the aligned nanocomposite reinforced with unmodified cellulose nanofibers. In addition, the aligned nanocomposite film is highly transparent and possesses an anisotropic light scattering effect, revealing its significant potential for optical applications.


Assuntos
Celulose/química , Nanocompostos/química , Nanofibras/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Difusão Dinâmica da Luz , Resistência à Tração
20.
Nanoscale ; 10(25): 11797-11807, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29675528

RESUMO

In nanocomposites, dispersing hydrophilic nanomaterials in a hydrophobic matrix using simple and environmentally friendly methods remains challenging. Herein, we report a method based on in situ polymerization to synthesize nanocomposites of well-dispersed cellulose nanocrystals (CNCs) and poly(vinyl acetate) (PVAc). We have also shown that by blending this PVAc/CNC nanocomposite with poly(lactic acid) (PLA), a good dispersion of the CNCs can be reached in PLA. The outstanding dispersion of CNCs in both PVAc and PLA/PVAc matrices was shown by different microscopy techniques and was further supported by the mechanical and rheological properties of the composites. The in situ PVAc/CNC nanocomposites exhibit enhanced mechanical properties compared to the materials produced by mechanical mixing, and a theoretical model based on the interphase effect and dispersion that reflects this behavior was developed. Comparison of the rheological and thermal behaviors of the mixed and in situ PVAc/CNC also confirmed the great improvement in the dispersion of nanocellulose in the latter. Furthermore, a synergistic effect was observed with only 0.1 wt% CNCs when the in situ PVAc/CNC was blended with PLA, as demonstrated by significant increases in elastic modulus, yield strength, elongation to break and glass transition temperature compared to the PLA/PVAc only material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...