Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Neurosurg J ; 10(1): 12, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594757

RESUMO

BACKGROUND: Patients with disorders of consciousness (DoC) exhibit varied revival outcomes based on different etiologies and diagnoses, the mechanisms of which remain largely unknown. The fluctuating clinical presentations in DoC pose challenges in accurately assessing consciousness levels and prognoses, often leading to misdiagnoses. There is an urgent need for a deeper understanding of the physiological changes in DoC and the development of objective diagnostic and prognostic biomarkers to improve treatment guidance. METHODS: To explore biomarkers and understand the biological processes, we conducted a comprehensive untargeted metabolomic analysis on serum samples from 48 patients with DoC. Patients were categorized based on etiology (TBI vs. non-TBI), CRS-R scores, and prognosis. Advanced analytical techniques, including PCA and OPLS-DA models, were employed to identify differential metabolites. RESULTS: Our analysis revealed a distinct separation in metabolomic profiles among the different groups. The primary differential metabolites distinguishing patients with varying etiologies were predominantly phospholipids, with a notable decrease in glycerophospholipids observed in the TBI group. Patients with higher CRS-R scores exhibited a pattern of impaired carbohydrate metabolism coupled with enhanced lipid metabolism. Notably, serum concentrations of both LysoPE and PE were reduced in patients with improved outcomes, suggesting their potential as prognostic biomarkers. CONCLUSIONS: Our study underscores the critical role of phospholipid metabolism in the brain's metabolic alterations in patients with DoC. It identifies key biomarkers for diagnosis and prognosis, offering insights that could lead to novel therapeutic targets. These findings highlight the value of metabolomic profiling in understanding and potentially treating DoC.

2.
Theor Appl Genet ; 137(3): 52, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369650

RESUMO

KEY MESSAGE: One major gene controlling primary root length (PRL) in Gossypium arboreum is identified and this research provides a theoretical basis for root development for cotton. Primary root elongation is an essential process in plant root system structure. Here, we investigated the primary root length (PRL) of 215 diploid cotton (G. arboreum) accessions at 5, 8, 10, 15 days after sowing. A Genome-wide association study was performed for the PRL, resulting in 49 significant SNPs associated with 32 putative candidate genes. The SNP with the strongest signal (Chr07_8047530) could clearly distinguish the PRLs between accessions with two haplotypes. GamurG is the only gene that showed higher relative expression in the long PRL genotypes than the short PRL genotypes, which indicated it was the most likely candidate gene for regulating PRL. Moreover, the GamurG-silenced cotton seedlings showed a shorter PRL, while the GamurG-overexpressed Arabidopsis exhibited a significantly longer PRL. Our findings provide insight into the regulation mechanism of cotton root growth and will facilitate future breeding programs to optimize the root system structure in cotton.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Melhoramento Vegetal , Genótipo , Haplótipos , Regulação da Expressão Gênica de Plantas
3.
CNS Neurosci Ther ; 30(2): e14388, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37563991

RESUMO

OBJECTIVES: This study investigated the prognostic effect of electroencephalography (EEG) instant effects of single spinal cord stimulation (SCS) on clinical outcome in disorders of consciousness (DOC) and the time-dependent brain response during the recovery of consciousness prompted by SCS. METHODS: Twenty three patients with DOC underwent short-term SCS (stSCS) implantation operation. Then, all patients received the postoperative EEG test including EEG record before (T1) and after (T2) single SCS session. Subsequently, 2 weeks stSCS treatment was performed and revised coma recovery scale (CRS-R) and EEG data were collected. Finally, they were classified into effective and ineffective groups at 3-month follow-up (T6). RESULTS: The parietal-occipital (PO) connectivity and clustering coefficients (CC) in the beta band of the effective group at the 1 week after the treatment (T5) were found to be higher than preoperative assessment (T0). Correlation analysis showed that the change in beta CC at T1/T2 was correlated with the change in CRS-R at T0/T6. In addition, the change in PO connectivity and CC in the beta at T0/T5 were also correlated with the change in CRS-R at T0/T5. CONCLUSION: SCS may facilitate the recovery of consciousness by enhancing local information interaction in posterior brain regions. And the recovery can be predicted by beta CC in the EEG test.


Assuntos
Estimulação da Medula Espinal , Humanos , Transtornos da Consciência/terapia , Eletroencefalografia , Encéfalo , Prognóstico , Estado de Consciência
4.
Curr Mol Med ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37817528

RESUMO

OBJECTIVE: To investigate the metabolomic differences between Traumatic brain injury (TBI) disorder of consciousness (DOC) patients and non-traumatic brain injury (NTBI) DOC patients by using cerebrospinal fluid (CSF), serum and urine samples beneficial to understand the pathological mechanism differences between the two etiologies, provide potential clues for the subsequent treatment and prognosis, and investigate the metabolome differences and similarities between TBI and NTBI among three different body fluids. METHODS: In total, 24 TBI DOC subjects and 29 NTBI DOC subjects were enrolled. CSF, serum and urine samples from TBI DOC and NTBI DOC patients were collected and analyzed by performing UPLC-MS. The statistical methods and pathway analyses were applied to discover potential biomarkers and altered metabolic functions. RESULTS: When comparing TBI DOC and NTBI DOC, 36, 31 and 52 differential metabolites were obtained in CSF, serum and urine, respectively. The functional analysis of differential metabolites obtained in CSF, serum and urine were all related to amino acid metabolism. Except for amino acid metabolism, metabolic biomarkers in CSF, serum and urine mainly focus on central function, cognitive function, necrosis and apoptosis and neurological function, respectively. In CSF, the highest AUC was 0.864 (Isoproturon) and 0.816 (Proline betaine). Then, the AUC of NFurfurylformamide in serum was 0.941, while the AUC of Dihydronepetalactone and Doxepin N-oxide glucuronide were 1.0 in urine. CONCLUSION: CSF, serum and urine metabolomic analyses could differentiate TBI DOC from NTBI DOC and functional analyses showed a metabolic change difference between TBI DOC and NTBI DOC.

5.
Front Aging Neurosci ; 15: 1213904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469954

RESUMO

Objectives: The pathological mechanism for a disorder of consciousness (DoC) is still not fully understood. Based on traditional behavioral scales, there is a high rate of misdiagnosis for subtypes of DoC. We aimed to explore whether topological characterization may explain the pathological mechanisms of DoC and be effective in diagnosing the subtypes of DoC. Methods: Using resting-state functional magnetic resonance imaging data, the weighted brain functional networks for normal control subjects and patients with vegetative state (VS) and minimally conscious state (MCS) were constructed. Global and local network characteristics of each group were analyzed. A support vector machine was employed to identify MCS and VS patients. Results: The average connection strength was reduced in DoC patients and roughly equivalent in MCS and VS groups. Global efficiency, local efficiency, and clustering coefficients were reduced, and characteristic path length was increased in DoC patients (p < 0.05). For patients of both groups, global network measures were not significantly different (p > 0.05). Nodal efficiency, nodal local efficiency, and nodal clustering coefficient were reduced in frontoparietal brain areas, limbic structures, and occipital and temporal brain areas (p < 0.05). The comparison of nodal centrality suggested that DoC causes reorganization of the network structure on a large scale, especially the thalamus. Lobal network measures emphasized that the differences between the two groups of patients mainly involved frontoparietal brain areas. The accuracy, sensitivity, and specificity of the classifier for identifying MCS and VS patients were 89.83, 78.95, and 95%, respectively. Conclusion: There is an association between altered network structures and clinical symptoms of DoC. With the help of network metrics, it is feasible to differentiate MCS and VS patients.

6.
Brain Behav ; 13(8): e3070, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421239

RESUMO

INTRODUCTION: Medical management of disorders of consciousness (DoC) is a growing issue imposing a major burden on families and societies. Recovery rates vary widely among patients with DoC, and recovery predictions strongly influence decisions on medical care. However, the specific mechanisms underlying different etiologies, consciousness levels, and prognoses are still unclear. METHODS: We analyzed the comprehensive cerebrospinal fluid (CSF) metabolome through liquid chromatography-mass spectrometry. Metabolomic analyses were used to identify the metabolic differences between patients with different etiologies, diagnoses, and prognoses. RESULTS: We found that the CSF levels of multiple acylcarnitines were lower in patients with traumatic DoC, suggesting mitochondrial function preservation in the CNS, which might contribute to the better consciousness outcomes of these patients. Metabolites related to glutamate and GABA metabolism were altered and showed a good ability to distinguish the patients in the minimally conscious state and the vegetative state. Moreover, we identified 8 phospholipids as potential biomarkers to predict the recovery of consciousness. CONCLUSIONS: Our findings shed light on the differences in physiological activities underlying DoC with different etiologies and identified some potential biomarkers used for DoC diagnosis and prognosis.


Assuntos
Transtornos da Consciência , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Prognóstico , Metabolômica , Espectrometria de Massas , Estado Vegetativo Persistente/complicações
7.
Front Neurosci ; 17: 1145065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123360

RESUMO

Hyperbaric oxygen (HBO) therapy is an effective treatment for patients with disorders of consciousness (DOC). In this study, real-time electroencephalogram (EEG) recordings were obtained from patients with DOC during HBO therapy. EEG microstate indicators including mean microstate duration (MMD), ratio of total time covered (RTT), global explained variance (GEV), transition probability, mean occurrence, and mean global field power (GFP) were compared before and during HBO therapy. The results showed that the duration of microstate C in all patients with DOC increased after 20 min of HBO therapy (p < 0.05). Further statistical analysis found that the duration of microstate C was longer in the higher CRS-R group (≥8, 17 cases) than in the lower group (<8, 24 cases) during HBO treatment. In the higher CRS-R group, the transition probabilities from microstate A to microstate C and from microstate C to microstate A also increased significantly compared with the probability before treatment (p < 0.05). Microstate C is generally considered to be related to a salience network; an increase in the transition probability between microstate A and microstate C indicates increased information exchange between the auditory network and the salience network. The results of this study show that HBO therapy has a specific activating effect on attention and cognitive control in patients and causes increased activity in the primary sensory cortex (temporal lobe and occipital lobe). This study demonstrates that real-time EEG detection and analysis during HBO is a clinically feasible method for assessing brain function in patients with DOC. During HBO therapy, some EEG microstate indicators show significant changes related to the state of consciousness in patients with chronic DOC. This will be complementary to important electrophysiological indicators for assessing consciousness and may also provide an objective foundation for the precise treatment of patients with DOC.

8.
BMC Genomics ; 24(1): 7, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624379

RESUMO

BACKGROUND: ORP (Oxysterol-binding protein-related proteins) genes play a role in lipid metabolism, vesicular transferring and signaling, and non-vesicular sterol transport. However, no systematic identification and analysis of ORP genes have been reported in cotton. RESULT: In this study, we identified 14, 14, 7, and 7 ORP genes in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. Phylogenetic analysis showed that all ORP genes could be classified into four groups. Gene structure and conserved motif analysis suggest that the function of this gene family was conserved. The Ka/Ks analysis showed that this gene family was exposed to purifying selection during evolution. Transcriptome data showed that four ORP genes, especially GhORP_A02, were induced by abiotic stress treatment. The cis-acting elements in the ORP promoters were responsive to phytohormones and various abiotic stresses. The silenced plants of GhORP_A02 were more sensitive to drought stress when compared to control. CONCLUSION: The major finding of this study shed light on the potential role of ORP genes in abiotic stress and provided a fundamental resource for further analysis in cotton.


Assuntos
Resistência à Seca , Gossypium , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Estresse Fisiológico/genética
9.
CNS Neurosci Ther ; 29(1): 296-305, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317719

RESUMO

BACKGROUND AND OBJECTIVES: The resting-state brain is composed of several discrete networks, which remain stable for 10-100 ms. These functional microstates are considered the building blocks of spontaneous consciousness. Electroencephalography (EEG) microstate analysis may provide insight into the altered brain dynamics underlying consciousness recovery in patients with disorders of consciousness (DOC). We aimed to analyze microstates in the resting-state EEG source space in patients with DOC, the relationship between state-specific features and consciousness levels, and the corresponding patterns of microstates and functional networks. METHODS: We obtained resting-state EEG data from 84 patients with DOC (27 in a minimally conscious state [MCS] and 57 in a vegetative state [VS] or with unresponsive wakefulness syndrome). We conducted a microstate analysis of the resting-state (EEG) source space and developed a state-transition analysis protocol for patients with DOC. RESULTS: We identified seven microstates with distinct spatial distributions of cortical activation. Multivariate pattern analyses revealed that different functional connectivity patterns were associated with source-level microstates. There were significant differences in the microstate properties, including spatial activation patterns, temporal dynamics, state shifts, and connectivity construction, between the MCS and VS groups. DISCUSSION: Our findings suggest that consciousness depends on complex dynamics within the brain and may originate from the anterior cortex.


Assuntos
Encéfalo , Transtornos da Consciência , Humanos , Transtornos da Consciência/diagnóstico por imagem , Estado de Consciência , Eletroencefalografia/métodos , Mapeamento Encefálico/métodos
10.
Front Aging Neurosci ; 14: 1032740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408094

RESUMO

Background: Spinal cord stimulation (SCS) is a promising treatment for patients with disorders of consciousness (DoC); however, the laboratory examinations and different electrodes (permanent #39286 vs. temporary percutaneous #3777, Medtronic, USA) that are associated with postoperative outcomes are unclear. The study aims to study the association between the change in postoperative cerebrospinal fluid (CSF) protein level and improvement in consciousness after SCS in DoC patients and to explore whether different electrodes were associated with elevated CSF protein levels. Materials and methods: A total of 66 DoC patients who received SCS treatment from December 2019 to December 2021 were retrospectively analyzed. Patients were grouped according to their elevated CSF protein level. The clinical characteristics of the patients and SCS stimulation parameters were compared. The preoperative sagittal diameter of the spinal canal is the distance from the midpoint of the posterior border of the vertebral body to the midpoint of the posterior wall of the spinal canal at the level of the superior border of C3. The postoperative sagittal diameter of the spinal canal is the distance from the midpoint of the posterior edge of the vertebral body to the anterior edge of the stimulation electrode. Patients with improved postoperative CRS-R scores greater than 3 or who progressed to the MCS + /eMCS were classified as the improved group and otherwise regarded as poor outcome. Results: We found that more DoC patients had elevated CSF protein levels among those receiving SCS treatment with permanent electrodes than temporary percutaneous electrodes (P = 0.001), and elevated CSF protein levels were significantly associated with a reduced sagittal diameter (P = 0.044). In DoC patients receiving SCS treatment, we found that elevated CSF protein levels (P = 0.022) and preoperative diagnosis (P = 0.003) were significantly associated with poor outcomes at 3 months. Logistic regression analysis showed that elevated CSF protein levels were significantly associated with poor outcomes (OR 1.008, 95% CI 1.001-1.016, P = 0.032). Conclusion: The results suggest that reducing the effect of electrode pads on anatomical changes may help improve the outcomes of DoC patients receiving SCS treatment. CSF protein levels are associated with poor postoperative outcomes and whether they are potential biomarkers in DoC patients receiving SCS treatment remain further exploration.

11.
Front Genet ; 13: 928055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313437

RESUMO

Cotton is an important natural fiber crop; its seeds are the main oil source. Abiotic stresses cause a significant decline in its production. The WUSCHEL-related Homeobox (WOX) genes have been involved in plant growth, development, and stress responses. However, the functions of WOX genes are less known in cotton. This study identified 39, 40, 21, and 20 WOX genes in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and Gossypium raimondii, respectively. All the WOX genes in four cotton species could be classified into three clades, which is consistent with previous research. The gene structure and conserved domain of all WOX genes were analyzed. The expressions of WOX genes in germinating hypocotyls and callus were characterized, and it was found that most genes were up-regulated. One candidate gene Gh_ A01G127500 was selected to perform the virus-induced gene silencing (VIGS) experiment, and it was found that the growth of the silenced plant (pCLCrVA: GhWOX4_A01) was significantly inhibited compared with the wild type. In the silenced plant, there is an increase in antioxidant activities and a decrease in oxidant activities compared with the control plant. In physiological analysis, the relative electrolyte leakage level and the excised leaf water loss of the infected plant were increased. Still, both the relative leaf water content and the chlorophyll content were decreased. This study proved that WOX genes play important roles in drought stress and callus induction, but more work must be performed to address the molecular functions of WOX genes.

12.
Front Neurol ; 13: 1026221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313512

RESUMO

Background: Spinal cord stimulation (SCS) can improve the level of awareness of prolonged disorder of consciousness (pDOC), but its application is restricted due to damage of invasive operation. Short-term spinal cord stimulation (st-SCS) in a minimally invasive manner will better balance the benefits and risks. Objectives: This study focuses on the safety and efficacy of st-SCS for pDOC and reveals the modulation characteristics of different frequencies of SCS. Methods: 31 patients received 2-week st-SCS treatment and 3-months follow-up. All patients were divided into two types of frequency treatment groups of 5 Hz and 70 Hz according to the postoperative electroencephalography (EEG) test. The efficacy was assessed based on the revised coma recovery scale (CRS-R). Results: The results showed a significant increase in CRS-R scores after treatment (Z = -3.668, p < 0.001) without significant adverse effects. Univariate analysis showed that the minimally conscious state minus (MCS-) benefits most from treatment. Furthermore, two frequency have a difference in the time-point of the CRS-R score increase. 5 Hz mainly showed a significant increase in CRS-R score at 2 weeks of treatment (p = 0.027), and 70 Hz additionally showed a delayed effect of a continued significant increase at 1 week after treatment (p = 0.004). Conclusion: st-SCS was safe and effective in improving patients with pDOC levels of consciousness, and was most effective for MCS-. Both 5 Hz and 70 Hz st-SCS can promote consciousness recovery, with 70 Hz showing a delayed effect in particular.

13.
BMC Plant Biol ; 22(1): 331, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820810

RESUMO

BACKGROUND: Cotton production is adversely effected by drought stress. It is exposed to drought stress at various critical growth stages grown under a water scarcity environment. Roots are the sensors of plants; they detect osmotic stress under drought stress and play an important role in plant drought tolerance mechanisms. The seedling stage is very sensitive to drought stress, and it needed to explore the methods and plant characteristics that contribute to drought tolerance in cotton. RESULTS: Initially, seedlings of 18 genotypes from three Gossypium species: G. hirsutum, G. barbadense, and G. arboreum, were evaluated for various seedling traits under control (NS) and drought stress (DS). Afterward, six genotypes, including two of each species, one tolerant and one susceptible, were identified based on the cumulative drought sensitivity response index (CDSRI). Finally, growth rates (GR) were examined for shoot and root growth parameters under control and DS in experimental hydroponic conditions. A significant variation of drought stress responses was observed across tested genotypes and species. CDSRI allowed here to identify the drought-sensitive and drought-resistant cultivar of each investigated species. Association among root and shoots growth traits disclosed influential effects of enduring the growth under DS. The traits including root length, volume, and root number were the best indicators with significantly higher differential responses in the tolerant genotypes. These root growth traits, coupled with the accumulation of photosynthates and proline, were also the key indicators of the resistance to drought stress. CONCLUSION: Tolerant genotypes have advanced growth rates and the capacity to cop with drought stress by encouraging characteristics, including root differential growth traits coupled with physiological traits such as chlorophyll and proline contents. Tolerant and elite genotypes of G. hirsutum were more tolerant of drought stress than obsolete genotypes of G. barbadense and G. arboreum. Identified genotypes have a strong genetic basis of drought tolerance, which can be used in cotton breeding programs.


Assuntos
Gossypium , Plântula , Secas , Gossypium/genética , Melhoramento Vegetal , Prolina , Plântula/genética
14.
Front Genet ; 13: 851343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360847

RESUMO

Growth-regulating factors-interacting factors (GIFs) are a type of transcription co-activators in plants, playing crucial roles in plants' growth, development, and stress adaptation. Here, a total of 35 GIF genes were identified and clustered into two groups by phylogenetic analysis in four cotton genus. The gene structure and conserved domain analysis proved the conservative characteristics of GIF genes in cotton. The function of GIF genes was evaluated in two cotton accessions, Ji A-1-7 (33xi) and King, which have larger and smaller lateral root numbers, respectively. The results showed that the expression of GhGIF4 in Ji A-1-7 (33xi) was higher than that in King. The enzyme activity and microstructure assay showed a higher POD activity, lower MDA content, and more giant cells of the lateral root emergence part phenotype in Ji A-1-7 (33xi) than in King. A mild waterlogging assay showed the GIF genes were down-regulated in the waterlogged seedling. Further confirmation of the suppression of GhGIF4 in cotton plants further confirmed that GhGIF4 could reduce the lateral root numbers in cotton. This study could provide a basis for future studies of the role of GIF genes in upland cotton.

15.
Genomics ; 114(3): 110331, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278614

RESUMO

Leaves are important organs for crop photosynthesis and transpiration, and their morphological characteristics can directly reflect the growth state of plants. Accurate measurement of leaf traits and mining molecular markers are of great significance to the study of cotton growth. Here, we performed a Genome-wide association study on 7 leaf traits in 213 Asian cotton accessions. 32 significant SNPs and 44 genes were identified. A field experiment showed significant difference in leaf hair and leaf area between DPL971 and its natural mutant DPL972. We also compared the leaf transcriptome difference between DPL971 and DPL972, and found a batch of differentially expressed genes and non-coding RNAs (including lncRNAs, microRNAs, and circRNAs). After integrating the GWAS and transcriptome results, we finally selected two coding genes (Ga03G2383 and Ga05G3412) and two microRNAs (hbr-miR156, unconservative_Chr03_contig343_2364) as the candidate for leaf traits. Those findings will provide important genomic resources for cotton leaf improvement breeding.


Assuntos
Gossypium , MicroRNAs , Gossypium/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Perfilação da Expressão Gênica , Folhas de Planta/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único
17.
BMC Plant Biol ; 22(1): 54, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086471

RESUMO

BACKGROUND: Seedling stage plant biomass is usually used as an auxiliary trait to study plant growth and development or stress adversities. However, few molecular markers and candidate genes of seedling biomass-related traits were found in cotton. RESULT: Here, we collected 215 Gossypium arboreum accessions, and investigated 11 seedling biomass-related traits including the fresh weight, dry weight, water content, and root shoot ratio. A genome-wide association study (GWAS) utilizing 142,5003 high-quality SNPs identified 83 significant associations and 69 putative candidate genes. Furthermore, the transcriptome profile of the candidate genes emphasized higher expression of Ga03G1298, Ga09G2054, Ga10G1342, Ga11G0096, and Ga11G2490 in four representative cotton accessions. The relative expression levels of those five genes were further verified by qRT-PCR. CONCLUSIONS: The significant SNPs, candidate genes identified in this study are expected to lay a foundation for studying the molecular mechanism for early biomass development and related traits in Asian cotton.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium/genética , Gossypium/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Biomassa , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único
18.
Sci Rep ; 11(1): 15935, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354212

RESUMO

Upland cotton (Gossypium hirsutum L.) is an important economic crop for renewable textile fibers. However, the simultaneous improvement of yield and fiber quality in cotton is difficult as the linkage drag. Compared with breaking the linkage drag, identification of the favorable pleiotropic loci on the genome level by genome-wide association study (GWAS) provides a new way to improve the yield and fiber quality simultaneously. In our study restriction-site-associated DNA sequencing (RAD-seq) was used to genotype 316 cotton accessions. Eight major traits in three categories including yield, fiber quality and maturation were investigated in nine environments (3 sites × 3 years). 231 SNPs associated with these eight traits (- log10(P) > 5.27) were identified, located in 27 genomic regions respectively by linkage disequilibrium analysis. Further analysis showed that four genomic regions (the region 1, 6, 8 and 23) held favorable pleiotropic loci and 6 candidate genes were identified. Through genotyping, 14 elite accessions carrying the favorable loci on four pleiotropic regions were identified. These favorable pleiotropic loci and elite genotypes identified in this study will be utilized to improve the yield and fiber quality simultaneously in future cotton breeding.

19.
Front Plant Sci ; 12: 565552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093598

RESUMO

For about a century, plant breeding has widely exploited the heterosis phenomenon-often considered as hybrid vigor-to increase agricultural productivity. The ensuing F1 hybrids can substantially outperform their progenitors due to heterozygous combinations that mitigate deleterious mutations occurring in each genome. However, only fragmented knowledge is available concerning the underlying genes and processes that foster heterosis. Although cotton is among the highly valued crops, its improvement programs that involve the exploitation of heterosis are still limited in terms of significant accomplishments to make it broadly applicable in different agro-ecological zones. Here, F1 hybrids were derived from mating a diverse Upland Cotton germplasm with commercially valuable cultivars in the Line × Tester fashion and evaluated across multiple environments for 10 measurable traits. These traits were dissected into five different heterosis types and specific combining ability (SCA). Subsequent genome-wide predictions along-with association analyses uncovered a set of 298 highly significant key single nucleotide polymorphisms (SNPs)/Quantitative Trait Nucleotides (QTNs) and 271 heterotic Quantitative Trait Nucleotides (hQTNs) related to agronomic and fiber quality traits. The integration of a genome wide association study with RNA-sequence analysis yielded 275 candidate genes in the vicinity of key SNPs/QTNs. Fiber micronaire (MIC) and lint percentage (LP) had the maximum number of associated genes, i.e., each with 45 related to QTNs/hQTNs. A total of 54 putative candidate genes were identified in association with HETEROSIS of quoted traits. The novel players in the heterosis mechanism highlighted in this study may prove to be scientifically and biologically important for cotton biologists, and for those breeders engaged in cotton fiber and yield improvement programs.

20.
Nat Genet ; 53(6): 916-924, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33859417

RESUMO

Large-scale genomic surveys of crop germplasm are important for understanding the genetic architecture of favorable traits. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton is poorly understood. Here, we analyzed 3,248 tetraploid cotton genomes and confirmed that the extensive chromosome inversions on chromosomes A06 and A08 underlies the geographic differentiation in cultivated Gossypium hirsutum. We further revealed that the haplotypic diversity originated from landraces, which might be essential for understanding adaptative evolution in cultivated cotton. Introgression and association analyses identified new fiber quality-related loci and demonstrated that the introgressed alleles from two diploid cottons had a large effect on fiber quality improvement. These loci provided the potential power to overcome the bottleneck in fiber quality improvement. Our study uncovered several critical genomic signatures generated by historical breeding effects in cotton and a wealth of data that enrich genomic resources for the research community.


Assuntos
Fibra de Algodão , Genoma de Planta , Geografia , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Inversão Cromossômica/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Variação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Haplótipos/genética , Filogenia , Especificidade da Espécie , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...