Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028298

RESUMO

In recent years, 3-hydroxychromone (3-HC) and its derivatives have attracted much interest for their applications as molecular photoswitches and fluorescent probes. A clear understanding of their excited-state dynamics is essential for their applications and further development of new functional 3-HC derivatives. However, the deactivation mechanism of the photoexcited 3-HC family is still puzzling as their spectral properties are sensitive to the surrounding medium and substituents. The excited-state relaxation channels of 3-HC have been a matter of intense debate. In the current work, we thoroughly investigated the excited-state decay process of the 3-HC system in the gas phase using high-level electronic structure calculations and on-the-fly excited-state dynamic simulations intending to provide insight into the intrinsic photochemical properties of the 3-HC system. A new deactivation mechanism is proposed in the gas phase, which is different from that in solvents. The excited-state intramolecular proton transfer (ESIPT) process that occurs in solutions is not preferred in the gas phase due to the existence of a sizable energy barrier (∼0.8 eV), and thus, no dual fluorescence is found. On the contrary, the non-radiative decay process is the dominant decay channel, which is driven by photoisomerization combined with ring-puckering and ring-opening processes. The results coincide with the observations of an experiment performed in a supersonic jet by Itoh (M. Itoh, Pure Appl. Chem., 1993, 65(8), 1629-1634). The current work indicates that the solution environment plays an important role in regulating the excited-state dynamic behaviour of the 3-HC system. This study thus provides theoretical guidance for the rational design and improvement of the photochemical properties of the 3-HC system and paves the way for further investigation into its photochemical properties in complex environments.

2.
Chemphyschem ; : e202400250, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820005

RESUMO

The design and application of molecular photoswitches have attracted much attention. Herein, we performed a detailed computational study on the photoswitch benzylidene-oxazolone system based on static electronic structure calculations and on-the-fly excited-state dynamic simulations. For the Z and E isomer, we located six and four minimum energy conical intersections (MECIs) between the first excited state (S1) and the ground state (S0), respectively. Among them, the relaxation pathway driven by ring-puckering motion is the most competitive channel with the photoisomeization process, leading to the low photoisomerization quantum yield. In the dynamic simulations, about 88 % and 66 % trajectories decay from S1 to S0 for Z and E isomer, respectively, within the total simulation time of ~2 ps. The photoisomeization quantum yields obtained in our study (0.20 for Z→E and 0.12 for E→Z) agree well with the experimental measured values (0.25 and 0.11), even though the number of trajectories is limited to 50. Our study sheds light on the complexity of the benzylidene-oxazolone system 's deactivation process and the competitive mechanisms among different reaction channels, which provides theoretical guidance for further design and development of benzylidene-oxazolone based molecular photoswitches.

3.
Phys Chem Chem Phys ; 25(46): 32002-32009, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37975722

RESUMO

The high photostability of DNAs and RNAs is inextricably related to the photochemical and photophysical properties of their building blocks, nucleobases and nucleosides, which can dissipate the absorbed UV light energy in a harmless manner. The deactivation mechanism of the nucleosides, especially the decay pathways of cytidine (Cyd), has been a matter of intense debate. In the current study, we employ high-level electronic structure calculations combined with excited state non-adiabatic dynamic simulations to provide a clear picture of the excited state deactivation of Cyd in both gas phase and aqueous solution. In both environments, a barrierless decay path driven by the ring-puckering motion and a relaxation channel with a small energy barrier driven by the elongation motion of CO bond are assigned to <200 fs and sub-picosecond decay time component, respectively. The presence of ribose group has a subtle effect on the dynamic behavior of Cyd in gas phase as the ribose-to-base hydrogen/proton transfer process is energetically inaccessible with a sizable energy barrier of about 1.4 eV. However, this energy barrier is significantly reduced in water, especially when an explicit water molecule is present. Therefore, we argue that the long-lived decay channel found in aqueous solution could be assigned to the Cyd-water intermolecular hydrogen/proton transfer process. The present study postulates a novel scenario toward deep understanding the intrinsic photostability of DNAs and RNAs and provides solid evidence to disclose the long history debate of cytidine excited-state decay mechanism, especially for the assignment of experimentally observed time components.

4.
Proc Natl Acad Sci U S A ; 120(16): e2120826120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040407

RESUMO

In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsible for calvarial bone regeneration, here we hypothesized that the regenerative potential of the newborn mouse calvaria is due to a significant amount of cSSCs present in the newborn expanding sutures. Thus, we tested whether such regenerative potential can be reverse engineered in adult mice by artificially inducing an increase of the cSSCs resident within the adult calvarial sutures. First, we analyzed the cellular composition of the calvarial sutures in newborn and in older mice, up to 14-mo-old mice, showing that the sutures of the younger mice are enriched in cSSCs. Then, we demonstrated that a controlled mechanical expansion of the functionally closed sagittal sutures of adult mice induces a significant increase of the cSSCs. Finally, we showed that if a calvarial critical size bone defect is created simultaneously to the mechanical expansion of the sagittal suture, it fully regenerates without the need for additional therapeutic aids. Using a genetic blockade system, we further demonstrate that this endogenous regeneration is mediated by the canonical Wnt signaling. This study shows that controlled mechanical forces can harness the cSSCs and induce calvarial bone regeneration. Similar harnessing strategies may be used to develop novel and more effective bone regeneration autotherapies.


Assuntos
Regeneração Óssea , Suturas Cranianas , Humanos , Adulto , Camundongos , Animais , Células-Tronco , Proliferação de Células , Suturas
5.
Methods Mol Biol ; 1576: 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-27730537

RESUMO

One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma. Here, we describe the construction of functional thymus organoids from decellularized thymus scaffolds repopulated with isolated TECs. Thymus decellularization was achieved by freeze-thaw cycles to induce intracellular ice crystal formation, followed by detergent-induced cell lysis. Cellular debris was removed with extensive wash. The decellularized thymus scaffolds can largely retain the 3D extracellular matrix (ECM) microenvironment that can support the recolonization of TECs. When transplanted into athymic nude mice, the reconstructed thymus organoids can effectively promote the homing of bone marrow-derived lymphocyte progenitors and support the development of a diverse and functional T cell repertoire. Bioengineering of thymus organoids can be a promising approach to rejuvenate/modulate the function of T-cell mediated adaptive immunity in regenerative medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular , Organoides/citologia , Células-Tronco/citologia , Timo/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Nus
6.
J Autoimmun ; 72: 33-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27173406

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by pancreatic ß cell destruction induced by islet reactive T cells that have escaped central tolerance. Many physiological and environmental triggers associated with T1D result in ß cell endoplasmic reticulum (ER) stress and dysfunction, increasing the potential for abnormal post-translational modification (PTM) of proteins. We hypothesized that ß cell ER stress induced by environmental and physiological conditions generates abnormally-modified proteins for the T1D autoimmune response. To test this hypothesis we exposed the murine CD4(+) diabetogenic BDC2.5 T cell clone to murine islets in which ER stress had been induced chemically (Thapsigargin). The BDC2.5 T cell IFNγ response to these cells was significantly increased compared to non-treated islets. This ß cell ER stress increased activity of the calcium (Ca(2+))-dependent PTM enzyme tissue transglutaminase 2 (Tgase2), which was necessary for full stress-dependent immunogenicity. Indeed, BDC2.5 T cells responded more strongly to their antigen after its modification by Tgase2. Finally, exposure of non-antigenic murine insulinomas to chemical ER stress in vitro or physiological ER stress in vivo caused increased ER stress and Tgase2 activity, culminating in higher BDC2.5 responses. Thus, ß cell ER stress induced by chemical and physiological triggers leads to ß cell immunogenicity through Ca(2+)-dependent PTM. These findings elucidate a mechanism of how ß cell proteins are modified and become immunogenic, and reveal a novel opportunity for preventing ß cell recognition by autoreactive T cells.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Estresse do Retículo Endoplasmático/imunologia , Células Secretoras de Insulina/imunologia , Sequência de Aminoácidos , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Autoimunidade/genética , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Cálcio/imunologia , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Cromogranina A/genética , Cromogranina A/imunologia , Cromogranina A/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Imunológicos , Proteína 2 Glutamina gama-Glutamiltransferase , Processamento de Proteína Pós-Traducional/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Transglutaminases/genética , Transglutaminases/imunologia , Transglutaminases/metabolismo
7.
PLoS One ; 10(11): e0142329, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544690

RESUMO

Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.


Assuntos
Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/patologia , Transformação Celular Viral , Embrião de Mamíferos/patologia , Células de Merkel/patologia , Poliomavírus das Células de Merkel/fisiologia , Neoplasias Cutâneas/patologia , Anaplasia , Animais , Carcinoma de Célula de Merkel/virologia , Contagem de Células , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Fígado/patologia , Masculino , Poliomavírus das Células de Merkel/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Neoplasias Cutâneas/virologia , Baço/patologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
8.
Development ; 142(14): 2533-44, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26138479

RESUMO

Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Epiderme/embriologia , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células de Merkel/citologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem Celular , Linhagem da Célula , Doxiciclina/química , Células Epidérmicas , Deleção de Genes , Cabelo/embriologia , Folículo Piloso/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Pele/embriologia , Tamoxifeno/química , Transgenes , Vibrissas/metabolismo
9.
Mol Ther ; 23(7): 1262-1277, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903472

RESUMO

One of the major obstacles in organ transplantation is to establish immune tolerance of allografts. Although immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited, transient, and associated with severe side effects. Induction of thymic central tolerance to allografts remains challenging, largely because of the difficulty of maintaining donor thymic epithelial cells in vitro to allow successful bioengineering. Here, the authors show that three-dimensional scaffolds generated from decellularized mouse thymus can support thymic epithelial cell survival in culture and maintain their unique molecular properties. When transplanted into athymic nude mice, the bioengineered thymus organoids effectively promoted homing of lymphocyte progenitors and supported thymopoiesis. Nude mice transplanted with thymus organoids promptly rejected skin allografts and were able to mount antigen-specific humoral responses against ovalbumin on immunization. Notably, tolerance to skin allografts was achieved by transplanting thymus organoids constructed with either thymic epithelial cells coexpressing both syngeneic and allogenic major histocompatibility complexes, or mixtures of donor and recipient thymic epithelial cells. Our results demonstrate the technical feasibility of restoring thymic function with bioengineered thymus organoids and highlight the clinical implications of this thymus reconstruction technique in organ transplantation and regenerative medicine.


Assuntos
Células Epiteliais/imunologia , Tolerância Imunológica/imunologia , Timo/crescimento & desenvolvimento , Transplante Homólogo , Aloenxertos/imunologia , Animais , Bioengenharia , Células Epiteliais/citologia , Camundongos , Organoides/imunologia , Medicina Regenerativa , Timo/citologia , Timo/imunologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-25566190

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver diseases closely associated with obesity and insulin resistance; deficient growth hormone (GH) action in liver has been implicated as a mechanism. Here, we investigated the evolution of NAFLD in aged mice with liver-specific GHR deletion. METHODS: We examined glucose tolerance, insulin responsiveness, and lipid profiles in aged male mice (44-50 weeks) with GHRLD. We performed proteomics analysis, pathway-based Superarray assay, as well as quantitative RT-PCR to gain molecular insight into the mechanism(s) of GHR-deficiency-mediated NAFLD. In addition, we examined the pathological changes of livers of aged GHRLD male mice. RESULTS: The biochemical profile was consistent with that of the metabolic syndrome: abnormal glucose tolerance, impaired insulin secretion, and hyperlipidemia. RT-qPCR analysis of key markers of inflammation revealed a three- to fivefold increase in TNFα and CCL3, confirming the presence of inflammation. Expression of fibrotic markers (e.g., Col1A2 and Col3A1) was significantly increased, together with a two- to threefold increase in TGFß transcripts. Proteomics analyses showed a marked decrease of Mup1 and Selenbp2. In addition, pathway-analysis showed that the expression of cell cycle and growth relevant genes (i.e., Ccnd1, Socs2, Socs3, and Egfr) were markedly affected in GHRLD liver. Microscopic analyses (H&E) of GHRLD livers revealed the presence of hepatic adenomas of different stages of malignancy. CONCLUSION: Abrogation of GH signaling in male liver leads to metabolic syndrome, hepatic steatosis, increased inflammation and fibrosis, and development of hepatic tumor. Since obesity, a common precursor of NAFLD, is a state of deficient GH secretion and action, the GHRLD model could be used to unravel the contribution of compromised hepatic GH signaling in these pathological processes, and help to identify potential targets for intervention.

11.
Biotechniques ; 51(6): 417-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22150333

RESUMO

Intracellular staining is a widely used flow cytometry (FCM)-based technique to detect the expression of cytoslio nucleic antigens. However, intracellular staining of cells expressing cytosolic fluorescent protein (FP) markers was proven to be problematic as significant loss of the FP-signal was routinely observed. Using splenocytes harvested from mice constitutively expressing the enhanced yellow fluorescent proteins (YFP) as a model, we modified the widely used intracellular staining protocol and successfully achieved simultaneous detection of both the nuclear proteins and YFP in T-regulatory cells. The improved protocol can be used to perform antibody-based intracellular characterization of FP-labeled target cells, while maintaining their fluorescent reporter signals for easy tracing and identification.


Assuntos
Proteínas de Bactérias/análise , Citoplasma/química , Proteínas Luminescentes/análise , Proteínas Nucleares/análise , Coloração e Rotulagem/métodos , Linfócitos T Reguladores/citologia , Animais , Permeabilidade da Membrana Celular , Camundongos , Baço/citologia , Fixação de Tecidos/métodos
12.
Am J Physiol Endocrinol Metab ; 300(2): E276-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20858756

RESUMO

α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic ß-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in ß-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and K(ATP) channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type ß-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within ß-cells. Anti-α-synuclein antibodies colocalized with K(ATP) channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with K(ATP) channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the ß-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with K(ATP) channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Canais KATP/metabolismo , Vesículas Secretórias/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Animais , Citoplasma/metabolismo , DNA/biossíntese , DNA/genética , Regulação para Baixo/fisiologia , Imuno-Histoquímica , Imunoprecipitação , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Canais KATP/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Secretórias/efeitos dos fármacos , alfa-Sinucleína/biossíntese
13.
Am J Physiol Endocrinol Metab ; 293(1): E293-301, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17405830

RESUMO

Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.


Assuntos
Adenosina Trifosfatases/efeitos dos fármacos , Proteínas de Transporte de Cátions/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Compostos de Sulfonilureia/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Glibureto/administração & dosagem , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Cloreto de Potássio/farmacologia
14.
Diabetes ; 56(5): 1277-88, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17317765

RESUMO

In healthy individuals, plasma insulin levels oscillate in both fasting and fed states. Numerous studies of isolated pancreata and pancreatic islets support the hypothesis that insulin oscillations arise because the underlying rate of insulin secretion also oscillates; yet, insulin secretion has never been observed to oscillate in individual pancreatic beta-cells. Using expressed fluorescent vesicle cargo proteins and total internal reflection fluorescence (TIRF) microscopy, we demonstrate that glucose stimulates human pancreatic beta-cells to secrete insulin vesicles in short, coordinated bursts of approximately 70 vesicles each. Randomization tests and spectral analysis confirmed that the temporal patterns of secretion were not random, instead exhibiting alternating periods of secretion and rest, recurring with statistically significant periods of 15-45 s. Although fluorescent vesicles arrived at the plasma membrane before, during, and after stimulation, their rate of arrival was significantly slower than their rate of secretion, so that their density near the plasma membrane dropped significantly during the cell's response. To study in greater detail the vesicle dynamics during cyclical bursts of secretion, we applied trains of depolarizations once a minute and performed simultaneous membrane capacitance measurements and TIRF imaging. Surprisingly, young fluorescent insulin vesicles contributed at least half of the vesicles secreted in response to a first train, even though young vesicles were vastly outnumbered by older, nonfluorescent vesicles. For subsequent trains, young insulin vesicles contributed progressively less to total secretion, whereas capacitance measurements revealed that total stimulated secretion did not decrease. These results suggest that in human pancreatic beta-cells, young vesicles are secreted first, and only then are older vesicles recruited for secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Cálcio/fisiologia , Técnicas de Cultura de Células , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Cinética , Microscopia de Fluorescência , Software
15.
J Biol Chem ; 281(48): 36856-63, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16954204

RESUMO

A complex involving Derlin-1 and p97 mediates the retrotranslocation and endoplasmic reticulum (ER)-associated degradation of misfolded proteins in yeast and is used by certain viruses to promote host cell protein degradation (Romisch, K. (2005) Annu. Rev. Cell Dev. Biol. 21, 435-456; Lilley, B. N., and Ploegh, H. L. (2004) Nature 429, 834-840; Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T. A. (2004) Nature 429, 841-847). We asked whether the components of this pathway are involved in the endoplasmic reticulum-associated degradation of the mammalian integral membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), a substrate for the ubiquitin-proteasome system. We report that Derlin-1 and p97 formed complexes with CFTR in human airway epithelial cells. Derlin-1 interacted with nonubiquitylated CFTR, whereas p97 associated with ubiquitylated CFTR. Exogenous expression of Derlin-1 led to its co-localization with CFTR in the ER where it reduced wild type (WT) CFTR expression and efficiently degraded the disease-associated CFTR folding mutants, DeltaF508 and G85E (>90%). Consistent with this, Derlin-1 also reduced the amount of WT or DeltaF508 CFTR appearing in detergent-in-soluble aggregates. An approximately 70% knockdown of endogenous Derlin-1 by RNA interference increased the steady-state levels of WT and DeltaF508 CFTR by 10-15-fold, reflecting its significant role in CFTR degradation. Derlin-1 mediated the degradation of N-terminal CFTR fragments corresponding to the first transmembrane domain of CFTR, but CFTR fragments that incorporated additional domains were degraded less efficiently. These findings suggest that Derlin-1 recognizes misfolded, nonubiquitylated CFTR to initiate its dislocation and degradation early in the course of CFTR biogenesis, perhaps by detecting structural instability within the first transmembrane domain.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Proteínas de Membrana/fisiologia , Mutação , Animais , Células COS , Chlorocebus aethiops , Cisteína Endopeptidases/química , Retículo Endoplasmático/metabolismo , Humanos , Microssomos/metabolismo , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Ubiquitina/química
16.
Am J Transplant ; 5(11): 2671-81, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16212626

RESUMO

The isolation process exposes human pancreatic islets to exogenous isolation enzymes. Exposure to these enzymes, as a result of intraductal injection in the pancreas or simple contact of islets with enzyme components, causes internalization into the islet cells of enzymes and their by-products. Human islets exposed to Liberase-HI exhibit a decreased insulin secretory ability that correlates with the time of exposure. This phenomenon is paralleled by increased expression of adhesion molecules (CD106 and CD62p) and activation of apoptotic pathways (Bax and Bcl-2) in islet cells. Increased functional impairment is also observed after islet transplantation in diabetic immunodeficient mice. Experimental exposure of islet grafts to exogenous isolation enzymes causes intense inflammation (CD11b positive cells) at the transplant site and it was associated with sickness behavior and eventually death of mouse recipients. The extent of these adverse effects likely deceives the standard qualitative protocols currently in use to assess islet quality in vitro. Reducing the secondary effects of exogenous isolation enzymes on isolated human islets may be crucial to enhance the quality of islets as tissue grafts.


Assuntos
Colagenases/farmacologia , Transplante das Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/fisiologia , Termolisina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Colagenases/farmacocinética , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/ultraestrutura , Transplante das Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Microscopia Confocal , Microscopia Imunoeletrônica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Termolisina/farmacocinética , Proteína X Associada a bcl-2/metabolismo
17.
J Gen Physiol ; 126(3): 285-99, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16129775

RESUMO

Major advances have been made on the inhibition gate and ATP site of the K(ir)6.2 subunit of the K(ATP) channel, but little is known about conformational coupling between the two. ATP site mutations dramatically disrupt ATP-dependent gating without effect on ligand-independent gating, observed as interconversions between active burst and inactive interburst conformations in the absence of ATP. This suggests that linkage between site and gate is conditionally dependent on ATP occupancy. We studied all substitutions at position 334 of the ATP site in K(ir)6.2deltaC26 that express in Xenopus oocytes. All substitutions disrupted ATP-dependent gating by 10-fold or more. Only positive-charged arginine or lysine at 334, however, slowed ligand-independent gating from the burst, and this was in some but not all patches. Moreover, the polycationic peptide protamine reversed the slowed gating from the burst of 334R mutant channels, and speeded the slow gating from the burst of wild-type SUR1/K(ir)6.2 in the absence of ATP. Our results support a two-step ligand-dependent linkage mechanism for K(ir)6.2 channels in which ATP-occupied sites function to electrostatically dissociate COOH-terminal domains from the membrane, then as in all K(ir) channels, free COOH-terminal domains and inner M2 helices transit to a lower energy state for gate closure.


Assuntos
Trifosfato de Adenosina/farmacologia , Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Substituição de Aminoácidos , Animais , Arginina/química , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Clonagem Molecular , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Lisina/química , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Oócitos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Protaminas/farmacologia , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Xenopus laevis
18.
Biophys J ; 87(6): L03-5, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15516519

RESUMO

We compared secretion kinetics for four different fluorescent cargo proteins, each targeted to the lumen of insulin secretory vesicles. Upon stimulation, individual vesicles displayed one of four distinct patterns of fluorescence change: i), disappearance, ii), dimming, iii), transient brightening, or iv), persistent brightening. For each fusion protein, a different pattern of fluorescence change dominated. Furthermore, we demonstrated that the dominant pattern depends upon both i), the specific choice of fluorescent protein, and ii), the sequence of amino acids linking the cargo protein to the fluorescent protein. Thus, in beta-cells, experiments involving fluorescent cargo proteins for the study of exocytosis must be interpreted carefully, as design of a fluorescent cargo protein determines secretion kinetics at exocytosis.


Assuntos
Proteínas de Transporte/metabolismo , Exocitose/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Microscopia de Fluorescência/métodos , Vesículas Secretórias/metabolismo , Animais , Artefatos , Proteínas de Transporte/ultraestrutura , Células Cultivadas , Corantes Fluorescentes/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Engenharia de Proteínas/métodos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Secretórias/ultraestrutura
19.
Biophys J ; 86(4): 2101-12, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15041650

RESUMO

KATP channels assemble from four regulatory SUR1 and four pore-forming Kir6.2 subunits. At the single-channel current level, ATP-dependent gating transitions between the active burst and the inactive interburst conformations underlie inhibition of the KATP channel by intracellular ATP. Previously, we identified a slow gating mutation, T171A in the Kir6.2 subunit, which dramatically reduces rates of burst to interburst transitions in Kir6.2DeltaC26 channels without SUR1 in the absence of ATP. Here, we constructed all possible mutations at position 171 in Kir6.2DeltaC26 channels without SUR1. Only four substitutions, 171A, 171F, 171H, and 171S, gave rise to functional channels, each increasing Ki,ATP for ATP inhibition by >55-fold and slowing gating to the interburst by >35-fold. Moreover, we investigated the role of individual Kir6.2 subunits in the gating by comparing burst to interburst transition rates of channels constructed from different combinations of slow 171A and fast T171 "wild-type" subunits. The relationship between gating transition rate and number of slow subunits is exponential, which excludes independent gating models where any one subunit is sufficient for inhibition gating. Rather, our results support mechanisms where four ATP sites independently can control a single gate formed by the concerted action of all four Kir6.2 subunit inner helices of the KATP channel.


Assuntos
Ativação do Canal Iônico/fisiologia , Oócitos/fisiologia , Canais de Potássio/fisiologia , Subunidades Proteicas/fisiologia , Xenopus laevis/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Sítios de Ligação , Ativação do Canal Iônico/genética , Mutação/genética , Canais de Potássio/genética , Subunidades Proteicas/genética , Xenopus laevis/genética
20.
Biotechniques ; 35(4): 718-22, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14579736

RESUMO

Type 1 diabetes results from the selective destruction of insulin-producing beta cells in the islets of Langerhans, and autoimmune T cells are thought to be the mediators of this destruction. T cells are also responsible for allorejection once the islets are transplanted into a patient to reduce the negative consequences of a lack of insulin. To better understand these processes, we have developed a transgenic mouse expressing proinsulin II tagged with a live-cell fluorescent reporter protein, Timer. Timer protein is unique because it changes color from green to red in the first 24 h after synthesis. With this marker, insulin synthesis can be carefully monitored through fluorescent changes over time. To complement this new biotechnological research tool, we designed a body window to allow for in vivo imaging over time of the islets transplanted under the kidney capsule. The window device, which is sutured to replace the underlying skin and body wall over the site of islet transplantation, may be used to simultaneously observe beta cells and T cells that have been labeled with a fluorochrome distinguishable from Timer. The imaging of both insulin-producing cells and T cells may be carried out repeatedly for a week or more with no need for repeated surgery, while preserving the life of the studied animal.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Proinsulina/metabolismo , Animais , Cor , Corantes Fluorescentes , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...