Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400286, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858773

RESUMO

n-Type organic conductive molecules play a significant role in organic electronics. Self-doping can increase the carrier concentration within the materials to improve the conductivity without the need for additional intentional dopants. This review focuses on the various strategies employed in the synthesis of self-doped n-type molecules, and provides an overview of the doping mechanisms. By elucidating these mechanisms, the review aims to establish the relationship between molecular structure and electronic properties. Furthermore, the review outlines the current applications of self-doped n-type molecules in the field of organic electronics, highlighting their performance and potential in various devices. It also offers insights into the future development of self-doped materials.

2.
Angew Chem Int Ed Engl ; 63(20): e202402642, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38453641

RESUMO

Conjugated polymers (CPs) with low crystallinity are promising candidates for application in organic thermoelectrics (OTEs), particularly in flexible devices, because the disordered structures of these CPs can effectively accommodate dopants and ensure robust resistance to bending. However, n-doped CPs usually exhibit poor thermoelectric performance, which hinders the development of high-performance thermoelectric generators. Herein, we report an n-type CP (ThDPP-CNBTz) comprising two acceptor units: a thiophene-flanked diketopyrrolopyrrole and a cyano-functionalized benzothiadiazole. ThDPP-CNBTz shows a low LUMO energy level of below -4.20 eV and features low crystallinity, enabling high doping efficiency. Moreover, the dual-acceptor design enhances polaron delocalization, resulting in good thermoelectric performance. After n-doping, ThDPP-CNBTz exhibits an average electrical conductivity (σ) of 50.6 S cm-1 and a maximum power factor (PF) of 126.8 µW m-1 K-2, which is among the highest values reported for solution-processed n-type CPs to date. Additionally, a solution-processed flexible OTE device based on doped ThDPP-CNBTz exhibits a maximum PF of 70 µW m-1 K-2; the flexible device also shows remarkable resistance to bending strain, with only a marginal change in σ after 600 bending cycles. The findings presented in this work will advance the development of n-type CPs for OTE devices, and flexible devices in particular.

3.
Angew Chem Int Ed Engl ; 63(19): e202319997, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38499464

RESUMO

High ambipolar mobility emissive conjugated polymers (HAME-CPs) are perfect candidates for organic optoelectronic devices, such as polymer light emitting transistors. However, due to intrinsic trade-off relationship between high ambipolar mobility and strong solid-state luminescence, the development of HAME-CPs suffers from high structural and synthetic complexity. Herein, a universal design principle and simple synthetic approach for HAME-CPs are developed. A series of simple non-fused polymers composed of charge transfer units, π bridges and emissive units are synthesized via a two-step microwave assisted C-H arylation and direct arylation polymerization protocol with high total yields up to 61 %. The synthetic protocol is verified valid among 7 monomers and 8 polymers. Most importantly, all 8 conjugated polymers have strong solid-state emission with high photoluminescence quantum yields up to 24 %. Furthermore, 4 polymers exhibit high ambipolar field effect mobility up to 10-2 cm2 V-1 s-1, and can be used in multifunctional optoelectronic devices. This work opens a new avenue for developing HAME-CPs by efficient synthesis and rational design.

4.
Macromol Rapid Commun ; 45(1): e2300245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37278130

RESUMO

A series of thienoisoindigo (TIG)-based conjugated polymers (CPs) with high molecular weights are synthesized by direct arylation polycondensation (DArP) by using TIG derivatives as CBr monomer and multi-halogenated thiophene derivatives, i.e., (E)-1,2-bis(3,4-difluorothien-2-yl)ethene (4FTVT), (E)-1,2-bis(3,4-dichlorothien-2-yl)ethene (4ClTVT), 3,3',4,4'-tetrafluoro-2,2'-bithiophene (4FBT), and 3,3',4,4'-tetrachloro-2,2'-bithiophene (4ClBT), as CH monomers. Density functional theory (DFT) calculations reveal the high selectivity between α-CH bonds in 4FTVT, 4ClTVT, 4FBT, and 4ClBT and ß-CH bonds in TIG CBr monomer. All four resulting CPs exhibit low optical bandgaps of ca. 1.20 eV and ambipolar transport characteristics with both electron and hole mobility above 0.1 cm2  V-1  s-1 as elaborated with organic thin-film transistors (OTFTs). The polymer TIG-4FTVT delivers the best device performance. With this polymer, n-channel OTFTs with electron mobility up to 1.67 cm2  V-1  s-1 and p-channel OTFTs with hole mobility up to 0.62 cm2  V-1  s-1 are fabricated by modifying source/drain electrodes with polyethylenimine ethoxylated (PEIE) and MoO3 , respectively, to selectively inject electrons and holes.


Assuntos
Etilenos , Polímeros , Polímeros/química , Tiofenos/química , Elétrons
5.
Nano Lett ; 24(1): 441-449, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109494

RESUMO

Conjugated polymer films are promising in wearable X-ray detection. However, achieving optimal film microstructure possessing good electrical and detection performance under large deformation via scalable printing remains challenging. Herein, we report bar-coated high-performance stretchable films based on a conjugated polymer P(TDPP-Se) and elastomer SEBS blend by optimizing the solution-processing conditions. The moderate preaggregation in solution and prolonged growth dynamics from a solvent mixture with limited dissolving capacity is critical to forming aligned P(TDPP-Se) chains/crystalline nanofibers in the SEBS phase with enhanced π-π stacking for charge transport and stress dissipation. The film shows a large elongation at break of >400% and high mobilities of 5.29 cm2 V-1 s-1 at 0% strain and 1.66 cm2 V-1 s-1 over 500 stretch-release cycles at 50% strain, enabling good X-ray imaging with a high sensitivity of 1501.52 µC Gyair-1 cm-2. Our work provides a morphology control strategy toward high-performance conjugated polymer film-based stretchable electronics.

6.
Light Sci Appl ; 12(1): 264, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932276

RESUMO

The neuromorphic vision sensor (NeuVS), which is based on organic field-effect transistors (OFETs), uses polar functional groups (PFGs) in polymer dielectrics as interfacial units to control charge carriers. However, the mechanism of modulating charge transport on basis of PFGs in devices is unclear. Here, the carboxyl group is introduced into polymer dielectrics in this study, and it can induce the charge transfer process at the semiconductor/dielectric interfaces for effective carrier transport, giving rise to the best device mobility up to 20 cm2 V-1 s-1 at a low operating voltage of -1 V. Furthermore, the polarity modulation effect could further increase the optical figures of merit in NeuVS devices by at least an order of magnitude more than the devices using carboxyl group-free polymer dielectrics. Additionally, devices containing carboxyl groups improved image sensing for light information decoding with 52 grayscale signals and memory capabilities at an incredibly low power consumption of 1.25 fJ/spike. Our findings provide insight into the production of high-performance polymer dielectrics for NeuVS devices.

7.
Macromol Rapid Commun ; 44(23): e2300393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640284

RESUMO

3,4-Difluorothiophene-substituted aryls, i.e., 1,4-bis(3,4-difluorothiophen-2-yl)-benzene (Ph-2FTh), 1,4-bis(3,4-difluorothiophen-2-yl)-2,5-difluorobenzene (2FPh-2FTh), and 4,7-bis(3,4-difluorothiophen-2-yl)-2,1,3-benzothiadiazole (BTz-2FTh), are synthesized as C─H monomers for the synthesis of conjugated polymers (CPs) via direct arylation polycondensation (DArP) with diketopyrrolopyrrole (DPP) and isoindigo (IID) derivatives as C─Br monomers. The Gibbs free energies of activation for direct arylation (ΔG298 K , kcal mol-1 ) for α─C─H bonds of thiophene moieties as calculated by density functional theory (DFT) are 14.3, 16.5, and 16.4 kcal mol-1 for Ph-2FTh, 2FPh-2FTh and BTz-2FTh, respectively, meaning that inserting an electron-deficient unit in 3,3',4,4'-tetrafluoro-2,2'-bithiophene (4FBT, ΔG298K : 14.6 kcal mol-1 ) may cause a reactivity decrease of the C─H monomers. Photophysical and semiconducting properties of the resulting six CPs (i.e., DPP-Ph, DPP-2FPh, DPP-BTz, 2FIID-Ph, 2FIID-2FPh, and 2FIID-BTz) are characterized in detail. DPP-based CPs show ambipolar transport properties while IID-based ones exhibited n-type behavior owing to the deeper frontier molecular orbital energy levels of IID-based CPs. With source/drain electrodes modified with polyethylenimine ethoxylated, n-channel organic thin-film transistors with maximum electron mobility of 0.40, 0.54, 0.29, 0.05, 0.16, and 0.01 cm2 V-1 s-1 for DPP-Ph, DPP-2FPh, DPP-BTz, 2FIID-Ph, 2FIID-2FPh, and 2FIID-BTz, respectively, are fabricated. DPP-2FPh exhibits the best device performance due to the good film morphology and the highest intermolecular packing order.


Assuntos
Polímeros , Pirróis , Gravidez , Humanos , Feminino , Polímeros/química , Pirróis/química , Cetonas , Tiofenos/química
8.
Angew Chem Int Ed Engl ; 62(35): e202307856, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37402633

RESUMO

Air stable n-type conductive molecules with high electrical conductivities and excellent device performance have important applications in organic electronics, but their synthesis remains challenging. Herein, we report three self-doped n-type conductive molecules, designated QnNs, with a closed-shell quinoidal backbone and alkyl amino chains of different lengths. The QnNs are self-doped by intermolecular electron transfer from the amino groups to the quinoidal backbone. This process is ascertained unambiguously by experiments and theoretical calculations. The use of a quinoidal structure effectively improves the self-doping level, and thus increases the electrical conductivity of self-doped n-type conductive molecules achieved by a closed-shell structure from<10-4  S cm-1 to>0.03 S cm-1 . Furthermore, the closed-shell quinoidal structure results in good air stability of the QnNs, with half-lives>73 days; and Q4N shows an electrical conductivity of 0.019 S cm-1 even after exposure to air for 120 days. When applying Q6N as the cathode interlayer in organic solar cells (OSCs), an outstanding power conversion efficiency of up to 18.2 % was obtained, which represents one the best results in binary OSCs.

9.
Org Lett ; 25(15): 2565-2570, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37043302

RESUMO

A convergent (outside-to-center) route was adopted to synthesize the precursors of quinoidal compounds in high yields of 85-93%. With subsequent rearrangement/dehydroxylation and oxidation, a series of thiophene-based quinoids with indandione or oxindole terminal groups were successfully synthesized. This strategy shows good compatibility with versatile central and terminal units, leading to quinoidal compounds with tunable properties.

10.
Nat Commun ; 14(1): 2281, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085540

RESUMO

Sensing and recognizing invisible ultraviolet (UV) light is vital for exploiting advanced artificial visual perception system. However, due to the uncertainty of the natural environment, the UV signal is very hard to be detected and perceived. Here, inspired by the tetrachromatic visual system, we report a controllable UV-ultrasensitive neuromorphic vision sensor (NeuVS) that uses organic phototransistors (OPTs) as the working unit to integrate sensing, memory and processing functions. Benefiting from asymmetric molecular structure and unique UV absorption of the active layer, the as fabricated UV-ultrasensitive NeuVS can detect 370 nm UV-light with the illumination intensity as low as 31 nW cm-2, exhibiting one of the best optical figures of merit in UV-sensitive neuromorphic vision sensors. Furthermore, the NeuVS array exbibits good image sensing and memorization capability due to its ultrasensitive optical detection and large density of charge trapping states. In addition, the wavelength-selective response and multi-level optical memory properties are utilized to construct an artificial neural network for extract and identify the invisible UV information. The NeuVS array can perform static and dynamic image recognition from the original color image by filtering red, green and blue noise, and significantly improve the recognition accuracy from 46 to 90%.

11.
Dalton Trans ; 52(14): 4349-4354, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36916817

RESUMO

Here, we report the synthesis, structure, and single-molecule conductance of three o-carborane-based molecular wires (ortho-, meta- and para-CN) with multiple conduction channels. The effect of connectivity in target wires compared with the corresponding phenyl-centered wires was studied using the scanning tunneling microscope break junction (STM-BJ) technique and theoretical calculations. Interestingly, the three-dimensional structure in o-carborane-based wires can effectively promote the through-space transmission paths or the formation of stable molecular junctions compared to the corresponding phenyl-centered wires. Moreover, the significant conductance difference of o-carborane-based wires was due to the combination of multiple conduction channels and quantum interference. Understanding the effects of different bridging groups and anchor group substitution patterns provides guidelines for designing o-carborane-based multichannel molecular wires.

12.
Angew Chem Int Ed Engl ; 62(20): e202219262, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36917081

RESUMO

n-Type conjugated polymers (CPs) are crucial in the applications of organic electronics. Direct coupling of electron-deficient C-H monomer via selective C-H activation, namely C-H/C-H oxidative direct arylation polycondensation (Oxi-DArP), is an ideal approach toward such CPs. Herein, Oxi-DArP is firstly adopted to synthesize a high-performance n-type CP using a newly developed monomer, i.e., 3,6-di(thiazol-5-yl)-diketopyrrolopyrrole (Tz-5-DPP). Tz-5-DPP based homopolymer PTz-5-DPP with a molecular weight of 22 kDa has been synthesized via Oxi-DArP. After n-doping, PTz-5-DPP films exhibited electric conductivity values up to 8 S cm-1 and power factors (PFs) up to 106 µW m-1 K-2 . Notably, this PF value is the highest for n-type polymer thermoelectric materials to date. The Oxi-DArP synthesis and the excellent n-type performance of the polymer make this work an important step toward the straightforward and sustainable preparation of high-performance n-type polymer semiconductors.

13.
Chemistry ; 29(12): e202203336, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36456528

RESUMO

Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.

14.
Adv Mater ; 35(3): e2207884, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333886

RESUMO

The stretchability and stretch-induced structural evolution of organic solar cells (OSCs) are pivotal for their collapsible, portable, and wearable applications, and they are mainly affected by the complex morphology of active layers. Herein, a highly ductile conjugated polymer P(NDI2OD-T2) is incorporated into the active layers of high-efficiency OSCs based on nonfullerene small molecule acceptors to simultaneously investigate the morphological, mechanical, and photovoltaic properties and structural evolution under stretching of ternary blend films with various acceptor contents. The structural robustness of the blend films is indicated by their stretch-induced structural evolution, which is monitored in real-time by a combination of in situ wide/small angle X-ray scattering. It is found that adding the soft P(NDI2OD-T2) can enhance the stretchability and structural robustness of ternary blend films by more entangled chains and tie chains to dissipate strain. Furthermore, the stretchability of the ternary blends can be superbly predicted by a 3D equivalent box model. This work provides instructive insight and guidance for designing stretchable electronics and predicting the stretchability of multicomponent blends.

15.
Angew Chem Int Ed Engl ; 61(40): e202210386, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36000462

RESUMO

Synthesis of triangulene and its derivatives is challenging due to their intrinsic high spin nature. Herein, we report solution-phase synthesis and isolation of a nitrogen-doped triangulene (i.e., aza-triangulene) (NT) and its cation (NT+ ) in single-crystal form. Notably, the cation NT+ can be regarded as an isoelectronic structure of the corresponding all-carbon triangulene. Both NT and NT+ show reasonable stability due to kinetic blocking by bulky and electron-withdrawing aryl substituents, and intramolecular donor-acceptor interaction. Bond length analysis, magnetic measurements and theoretical calculations reveal that the neutral NT has a doublet ground state with a zwitterionic character, while the cation NT+ exhibits a triplet ground state with a singlet-triplet energy gap of +0.84 kcal mol-1 . This study provides a rational strategy to access high-spin systems by heteroatom doping of pure π-conjugated polycyclic hydrocarbons.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35849824

RESUMO

Polymer semiconductors with large elastic recovery (ER) under high strain in thin film state are highly desirable for stretchable electronics. Here we report a type of stretchable semiconductor PU(DPP)x, by copolymerization of oligodiketopyrrolopyrrole-based conjugated block and hydrogenated polybutadiene flexible block via urethane linkage for intermolecular hydrogen bonding. By regulating block ratio, PU(DPP)35 with 35 wt % conjugated block exhibits high intrinsic ER > 80% under 175% strain (ε) in pseudo free-standing thin film state, comparable with commercial elastomers, and crack onset strain (COS) > 300% along with maximum hole mobility of 0.19 cm2 V-1 s-1 in organic thin film transistors to bring it to the best performing block copolymer-type stretchable semiconductors. Enhanced mobility is achieved using PU(DPP)35 as the binder for conjugated polymer PDPPT3. The 25 wt %-PDPPT3 blend displays mobility up to 1.28 cm2 V-1 s-1 along with COS ∼120%, and 10 wt %-PDPPT3 blend exhibits ER of 78% at ε = 150%, COS of ∼230%, modulus of 36.5 MPa, maximum mobility of 0.62 cm2 V-1 s-1 and no obvious degradation of mobility at ε = 150% after 100 cycles of strain. Moreover, the structural similarity enables the blend film uniform and stable microstructure against mechanical and thermal deformation. Notably, PU(DPP)35 and the blend are characterized by high mechanical performance similar to that of commercial elastomers in thin film state, and demonstrate their potential for high performance stretchable electronics.

17.
Adv Mater ; 34(17): e2200179, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35239994

RESUMO

Much effort is devoted to develop agents with superior photoacoustic/photothermal properties for improved disease diagnosis and treatment. Herein, a new fused two isoindigo (DIID)-based semiconducting conjugated polymer (named PBDT-DIID) is rationally designed and synthesized with a strong near-infrared absorption band ranging from 700 to 1000 nm. Water-dispersing nanoparticles (NPs) of PBDT-DIID are prepared with good biocompatibility and a rather high photothermal conversion efficiency (70.6%), as the active excited-state intramolecular twist around the central double bonds in DIID permits most of the absorbed excitation energy flow to heat deactivation pathway through internal conversion. The photoacoustic signal can be further magnified by incorporation of polylactide (PLA) in the NP core to confine the generated heat of PBDT-DIID within NPs. The resultant doped NPs show excellent performance in photoacoustic imaging-guided photothermal therapy in an orthotopic 4T1 breast tumor-bearing mouse model. It is also found that the photothermal effect of the PBDT-DIID NPs is safe and quite efficacious to highly improve the root canal treatment outcome by heating the 1% NaClO solution inside the root canal upon 808 nm laser irradiation in a human extracted tooth root canal infection model.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animais , Linhagem Celular Tumoral , Camundongos , Nanopartículas/química , Fototerapia , Polímeros/química , Tratamento do Canal Radicular
18.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101985

RESUMO

Organic electrode materials have emerged as promising alternatives to conventional inorganic materials because of their structural diversity and environmental friendliness feature. However, their low energy densities, limited by the single-electron reaction per active group, have plagued the practical applications. Here, we report a nitroaromatic cathode that performs a six-electron reaction per nitro group, drastically improving the specific capacity and energy density compared with the organic electrodes based on single-electron reactions. Based on such a reaction mechanism, the organic cathode of 1,5-dinitronaphthalene demonstrates an ultrahigh specific capacity of 1,338 mAh⋅g-1 and energy density of 3,273 Wh⋅kg-1, which surpass all existing organic cathodes. The reaction path was verified as a conversion from nitro to amino groups. Our findings open up a pathway, in terms of battery chemistry, for ultrahigh-energy-density Li-organic batteries.

19.
Adv Mater ; 34(7): e2108255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850998

RESUMO

Aggregation-structure formation of conjugated polymers is a fundamental problem in the field of organic electronics and remains poorly understood. Herein, the molar mass dependence of the aggregation structure of a high-mobility conjugated copolymer (TDPP-Se) comprising thiophene-flanked diketopyrrolopyrrole and selenophene is thoroughly shown. Five batches of TDPP-Se are prepared with the number-average molecular weights (Mn ) varied greatly from 21 to 135 kg mol-1 . Small-angle neutron scattering and transmission electron microscopy are combined to probe the solution structure of these polymers, consistently using a deuterated solvent. All the polymers adopt 1D rod-like aggregation structures and the radius of the 1D rods is not sensitive to the Mn , while the length increases monotonically with Mn . By utilizing the ordered packing of the aggregated structure in solution, a highly aligned and ordered film is prepared and, thereafter, a reliable hole mobility of 13.8 cm2 V-1 s-1 is realized in organic thin-film transistors with the moderate Mn batch via bar coating. The hole mobility is among the highest values reported for diketopyrrolopyrrole-based polymers. This work paves the way to visualize the real aggregated structure of polymer semiconductors in solution and sheds light on the microstructure control of high-performance electronic devices.

20.
ACS Appl Mater Interfaces ; 13(51): 61487-61495, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913343

RESUMO

Three narrow band gap (NBG) acceptors, namely, TTDTC-0F, TTDTC-2F, and TTDTC-4F, were synthesized by introducing a strong electron-donating unit as the central core. The enhanced intramolecular charge transfer endows the three acceptors with high-lying highest occupied molecular orbitals (HOMOs) of ∼-5.20 eV and ultranarrow band gaps (∼1.25 eV). When blended with poly(3-hexylthiophene) (P3HT), all organic solar cells (OSCs) exhibited a broad photoresponse from 300 to ∼1000 nm. Among them, P3HT:TTDTC-4F-based devices achieved the highest efficiency of 7.81% with a prominent Jsc exceeding 22 mA·cm-2. This study demonstrates that the conjugated molecules with high HOMOs can also function as acceptor materials for P3HT-based OSCs, which opens a window to increase PCEs of P3HT-based OSCs in the future to the level of the devices based on the current state-of-the-art polymer donor materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...