Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(6): e2306291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775937

RESUMO

The traditional tris(bipyridine)ruthenium(II) complex suffers from the notorious aggregation-caused quenching effect, which greatly compromises its electrochemiluminescence (ECL) efficiency, thus hindering further applications in biosensing and clinical diagnosis. Here, the ultrathin tetraphenylethylene-active tris(bipyridine)ruthenium(II) derivative nanosheets (abbreviated as Ru-TPE NSs) are synthesized through a protein-assisted self-assembly strategy for ultrasensitive ECL detection of human telomerase RNA (hTR) for the first time. The synthesized Ru-TPE NSs exhibit the aggregation-induced enhanced ECL behavior and excellent water-dispersion. Surprisingly, up to a 106.5-fold increase in the ECL efficiency of Ru-TPE NSs is demonstrated compared with the dispersed molecules in an organic solution. The restriction of intramolecular motions is confirmed to be responsible for the significant ECL enhancement. Therefore, this proposed ECL biosensor shows high sensitivity and excellent selectivity for hTR based on Ru-TPE NSs as efficient ECL beacons and the catalytic hairpin assembly as signal amplification, whose detection limit is as low as 8.0 fm, which is far superior to the previously reported works. Here, a promising analytical method is provided for early clinical diagnosis and a new type of efficient ECL emitters with great application prospects is represented.


Assuntos
Técnicas Biossensoriais , Rutênio , Telomerase , Humanos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , RNA , Técnicas Biossensoriais/métodos
2.
Biosens Bioelectron ; 216: 114613, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973274

RESUMO

Since atherosclerosis, a disease characterized by abnormal arterial lipid deposition, may lead to fatal cardiovascular diseases, imaging of atherosclerotic plaques is of great value for their pathological assessment. In this study, we propose a lipid droplet (LD)-hitchhiking strategy to in situ create Trojan foam cells for fluorescence/photoacoustic imaging of atherosclerotic plaques via homologous targeting effect. In our design, functional liposomes (DCP liposomes) composed of phospholipid dioleoylphosphatidylserine (DOPS), a novel LD inducer we found, and Cypate-PC, a synthesized lipid-like molecular probe, have demonstrated great capability of inducing LDs in monocytes/macrophages while being enveloped into the resulting Trojan foam cells. Taking advantage of homologous targeting effect, the imaging probe hitchhikes on the LDs in Trojan foam cells for targeted transport to the plaque sites. Moreover, the confinement in highly hydrophobic LDs endows the imaging probe with high efficiency in light absorption, enabling greatly intensified fluorescence/photoacoustic signals. The DCP liposomes have shown great potency in inducing the generation of Trojan foam cells, and eventually ex vivo fluorescence imaging and in vivo photoacoustic imaging of atherosclerotic plaques. The proposed strategy provides more insights into the design of targeted imaging methodologies, and also an effective avenue to facilitate the evaluation and subsequent treatment of atherosclerotic plaques.


Assuntos
Aterosclerose , Técnicas Biossensoriais , Técnicas Fotoacústicas , Placa Aterosclerótica , Aterosclerose/patologia , Células Espumosas/patologia , Humanos , Gotículas Lipídicas/patologia , Lipossomos , Sondas Moleculares , Imagem Óptica , Fosfolipídeos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...