Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403111, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934213

RESUMO

Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.

2.
Adv Mater ; 36(27): e2401178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648568

RESUMO

Shape memory polymers (SMPs) have attracted significant attention and hold vast potential for diverse applications. Nevertheless, conventional SMPs suffer from notable shortcomings in terms of mechanical properties, environmental stability, and energy density, significantly constraining their practical utility. Here, inspired by the structure of muscle fibers, an innovative approach that involves the precise incorporation of subtle, permanent cross-linking within a hierarchical hydrogen bonding supramolecular network is reported. This novel strategy has culminated in the development of covalent and supramolecular shape memory polyurea, which exhibits exceptional mechanical properties, including high stiffness (1347 MPa), strength (82.4 MPa), and toughness (312.7 MJ m-3), ensuring its suitability for a wide range of applications. Furthermore, it boasts remarkable recyclability and repairability, along with excellent resistance to moisture, heat, and solvents. Moreover, the polymer demonstrates outstanding shape memory effects characterized by a high energy density (24.5 MJ m-3), facilitated by the formation of strain-induced oriented nanostructures that can store substantial amounts of entropic energy. Simultaneously, it maintains a remarkable 96% shape fixity and 99% shape recovery. This delicate interplay of covalent and supramolecular bonds opens up a promising pathway to the creation of high-performance SMPs, expanding their applicability across various domains.

3.
Small Methods ; 7(10): e2300394, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37428549

RESUMO

Lead halide perovskite nanocrystals (LHP NCs) have the characteristics of fast reaction kinetics and crystal instability due to the intrinsically highly ionic bonding between the respective ions, which bring challenges for revealing the growth kinetics and practical applications. Compared with conventional batch synthesis methods, the single-function microreactor can achieve precise and stable control of the NCs synthesis process, but it still has the shortcoming of not being able to obtain information about the growth process. In this study, a micro Total Reaction System (µTRS) with remote control, online detection, and rapid data analysis functions is designed. µTRS can sample the photoluminescence information of CsPbBr3 NCs growth in ligand-assisted reprecipitation method. CsPbBr3 NCs with an emission range of 435-492 nm are successfully detected, which breaks the record of the smallest size of CsPbBr3 NCs synthesized directly from precursors. The real-time feature of µTRS enables the construction of an automated close-loop synthesis system. Besides, the rapid acquisition and timely processing of product information enable the rapid mapping of the operation space for CsPbBr3 NCs preparation, which provides a reliable and learnable data set for designing a fully autonomous microreaction system capable of synthesizing NCs.

4.
Small ; 18(19): e2200740, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398978

RESUMO

Cesium lead halide perovskite nanocrystals (CLHP NCs) have a wide range of potential applications benefited from the properties of high photoluminescence quantum yield (PLQY), wide luminous gamut, and narrow half peak width. However, due to the ionic nature and sensitivity to moisture, oxygen, or heat, perovskite nanocrystals are too fragile to maintain their crystal structure and optical properties. This work proposes solutions to two key issues in the development of CLHP NCs. First, a productive droplet-based microreactor system is designed to accomplish the scale-up production of CLHP NCs, obtaining sub-gram high-purity nanocrystal powders in a single production process. Second, CLHP NCs which are stable in polar solvents, air environment, and high temperature by using 3-aminopropyl triethoxysilane (APTES) as basic ligand are obtained. Wrapped with Si-O-Si generated by APTES, the CLHP NCs exhibit a longer fluorescence lifetime and higher quantum yield. Especially, the PLQY of CsPbBr3 @APTES can be stable at higher than 90% for more than 10 days. The Si-O-Si protective layer can also suppress the anion exchange between CsPbBr3 and CsPbI3 , maintaining the monochromaticity of nanocrystal luminescence. Eventually, full-spectrum quantum light-emitting diode (QLED) beads with robust nanocrystals are fabricated. The gamut of CsPbX3 @APTES encompasses 140% of the NTSC color gamut standard.

5.
Nanoscale Adv ; 3(8): 2180-2195, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133767

RESUMO

Bio-sensing and bio-imaging of organisms or molecules can provide key information for the study of physiological processes or the diagnosis of diseases. Quantum dots (QDs) stand out to be promising optical detectors because of their excellent optical properties such as high brightness, stability, and multiplexing ability. Diverse approaches have been developed to generate QDs, while microfluidic technology is one promising path for their industrial production. In fact, microfluidic devices provide a controllable, rapid and effective route to produce high-quality QDs, while serving as an effective in situ platform to understand the synthetic mechanism or optimize reaction parameters for QD production. In this review, the recent research progress in microfluidic synthesis and bio-detection applications of QDs is discussed. The definitions of different QDs are first introduced, and the advances in microfluidic-based fabrication of quantum dots are summarized with a focus on perovskite QDs and carbon QDs. In addition, QD-based bio-sensing and bio-imaging technologies for organisms of different scales are described in detail. Finally, perspectives for future development of microfluidic synthesis and applications of QDs are presented.

6.
Biomicrofluidics ; 14(6): 061508, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33381250

RESUMO

Single-cell analysis to investigate cellular heterogeneity and cell-to-cell interactions is a crucial compartment to answer key questions in important biological mechanisms. Droplet-based microfluidics appears to be the ideal platform for such a purpose because the compartmentalization of single cells into microdroplets offers unique advantages of enhancing assay sensitivity, protecting cells against external stresses, allowing versatile and precise manipulations over tested samples, and providing a stable microenvironment for long-term cell proliferation and observation. The present Review aims to give a preliminary guidance for researchers from different backgrounds to explore the field of single-cell encapsulation and analysis. A comprehensive and introductory overview of the droplet formation mechanism, fabrication methods of microchips, and a myriad of passive and active encapsulation techniques to enhance single-cell encapsulation efficiency were presented. Meanwhile, common methods for single-cell analysis, especially for long-term cell proliferation, differentiation, and observation inside microcapsules, are briefly introduced. Finally, the major challenges faced in the field are illustrated, and potential prospects for future work are discussed.

7.
Small ; 16(51): e2002313, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33241606

RESUMO

Artificial cells are a powerful platform in the study of synthetic biology and other valuable fields. They share a great potential in defining and utilizing the superiority of the living system. Here, a protein synthesis system based on thermal responsive hydrogels with porous structure is reported. The hydrogels can immobilize plasmids on the surface inside their porous structure through a volume phase transition upon 34 °C, forming an aggregation state of DNAs as in nature conditions. The artificial microgels can carry out bioreactions in cell-free systems and exhibit a sustainable and efficient performance for protein translation. The protein synthesis level reaches a maximum of twice more than that in a conventional solution system when the plasmid concentration is 10-20 ng µL-1 , along with a doubled effective interval. This is perhaps attributed to confined transcription and translation processes in the near-surface area of hydrogels. Summarily, the research provides an easy-handling approach in fabricating effective microgels for cell-free synthesis and also inspirations for constructing a configurable artificial cell.

8.
Small ; 16(6): e1906357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913575

RESUMO

Multiphase microfluidics enables an alternative approach with many possibilities in studying, analyzing, and manufacturing functional materials due to its numerous benefits over macroscale methods, such as its ultimate controllability, stability, heat and mass transfer capacity, etc. In addition to its immense potential in biomedical applications, multiphase microfluidics also offers new opportunities in various industrial practices including extraction, catalysis loading, and fabrication of ultralight materials. Herein, aiming to give preliminary guidance for researchers from different backgrounds, a comprehensive overview of the formation mechanism, fabrication methods, and emerging applications of multiphase microfluidics using different systems is provided. Finally, major challenges facing the field are illustrated while discussing potential prospects for future work.

9.
Lab Chip ; 18(13): 1838-1843, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29850737

RESUMO

We used microfluidic technology for preparing gas-liquid Janus emulsions; we firstly proposed a one-step preparation method of micro-grippers and then characterized the function of oriented and precise delivery behavior. Because of the enrichment of Fe3O4 nanoparticles, the micro-gripper can reach a speed of 1.5 mm s-1 driven by a magnetic field. The micro-gripper's body is made of a poly(N-isopropylacrylamide) hydrogel, a reversible temperature-responsive polymer. The thermo-sensitivity of hydrogels offers the function of grasping, to closely integrate with the target carried, ensuring the stability of the carrying process. The reversible variation of the hydrogel allows the micro-gripper to be reusable and have a long shelf life.

10.
Chemphyschem ; 19(16): 2009-2013, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28771977

RESUMO

Self-assembly is the process to form ordered compound structures. Theories and experiments involving nanosized Janus particles have proved that the assembled cluster structures are related to the unit number. Micrometer-sized amphiphilic Janus particles could also act as surfactants to stabilize droplets and aggregate to form clusters. When the scale order increases to the millimeter size, particles are usually connected under shape-match mechanism, which means that the assembled structure is related to the particular particle morphology rather than the particle number. Similar to millimeter-sized particles, sub-millimeter-sized particles are larger and heavier such that their gravity cannot be ignored, whereas their Brownian motion could be neglected. To investigate the self-assembly behavior of sub-millimeter-sized Janus particles, we synthesize smart amphiphilic Janus microparticles directly from water-oil Janus droplets in one step by using a double-core capillary device. We find that the amphiphilic Janus particles could also be distributed directionally between the sides of the water-oil interface. When in oil solutions with several water droplets, the particles self-assemble into micelle-like structures to cover the water droplets with the hydrophilic phase inside. After evaporation, structures with a hydrophilic concave and a hydrophobic convex are formed. This paper demonstrates that sub-millimeter-sized amphiphilic Janus particles exhibit similar ability to nano-sized Janus particles to aggregate into clusters with ordered structures.

11.
Sci Rep ; 7: 42738, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198444

RESUMO

Here in this article, we classify and conclude the four morphologies of three-phase emulsions. Remarkably, we achieve the reversible transformations between every shape. Through theoretical analysis, we choose four liquid systems to form these four morphologies. Then monodispersed droplets with these four morphologies are formed through a microfluidic device and captured in a petri-dish. By replacing their ambient solution of the captured emulsions, in-situ morphology transformations between each shape are achieved. The process is well recorded through photographs and videos and they are systematical and reversible. Finally, we use the droplets structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve the process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea to achieve the switchable and reversible reaction control in multiple-phase reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...