Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 3): 150730, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606857

RESUMO

It is desirable to control volatile fatty acids (VFAs) recovery from waste activated sludge (WAS) while avoiding the release of N and P. Structural extracellular polymeric substances (St-EPS), with typical components of alginate and polygalacturonic acid, resist the biodegradation of extracellular polymeric substances (EPS) in WAS. Previously, we purposely enriched an alginate-degrading consortium (ADC), but, both controlling VFAs production and cell integrity after dosing with ADC were not investigated. In this work, ADC with a high percentage of the genus Bacteroides (~67%) was further enriched with alginate utilization above 95%. The St-EPS content in WAS was 109.7 ± 3.3 mg/g-VSS, accounting for 31% of EPS. After dosing ADC in the WAS, the main metabolites were acetate (1.6 g/L) and propionate (0.7 g/L), the hydrolysis efficiency was increased to 38%, and the acidification efficiency was increased to 72%. Cell integrity was maintained during WAS fermentation by dosing with ADC according to no P release and unchanged lactate dehydrogenase activity. VFA production was mainly from the EPS, and protein degradation in EPS resulted in low N release (e.g., 212 mg/L from casein and no P release). Consequently, ADC doing offers the advantages of controlling VFAs production from EPS while maintaining cell integrity.


Assuntos
Alginatos , Esgotos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise
2.
J Hazard Mater ; 424(Pt A): 127377, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879570

RESUMO

The refractory organics released from waste activated sludge (WAS) are unwanted produced in thermal-alkaline pretreatment, which are not well documented. In this study, we refer to them as melanoidins products (MPs) with characteristics of high molecular weight and inhibition to microbes. The results showed that these MPs from thermal-alkaline (80 °C and pH 10) pretreatment of WAS were identified with a broad molecular weight (>1000 Da). Dark-colored MPs were further verified from glucose and tryptophan as the model components, with values of UV280 and UV420 increasing. The produced MPs with a molecular weight of 1220, 6835, and even 21,200,000 Da were confirmed by SEC-HPLC. Unexpectedly, MPs were found to be electroactive with higher redox peak values than that of humic acids, which were almost not degraded by anaerobes as revealed by SEC-HPLC and 3D-EEM spectra. For the first time, the results demonstrated that MPs delayed volatile fatty acids production and reduced the methane yield (22-26% lower), which was likely attributed to the toxicity and/or electrons competition with anaerobes such as Methanosaeta. Thus, it is clear that MPs negatively impact anaerobic digestion after thermal-alkaline pretreatment, which shall be re-evaluated to minimize MPs when producing biochemicals from WAS.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Metano , Polímeros
3.
Environ Sci Technol ; 55(24): 16636-16645, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34860015

RESUMO

Uronic acid in extracellular polymeric substances is a primary but often ignored factor related to the difficult hydrolysis of waste-activated sludge (WAS), with alginate as a typical polymer. Previously, we enriched alginate-degrading consortia (ADC) in batch reactors that can enhance methane production from WAS, but the enzymes and metabolic pathway are not well documented. In this work, two chemostats in series were operated to enrich ADC, in which 10 g/L alginate was wholly consumed. Based on it, the extracellular alginate lyase (∼130 kD, EC 4.2.2.3) in the cultures was identified by metaproteomic analysis. This enzyme offers a high specificity to convert alginate to disaccharides over other mentioned hydrolases. Genus Bacteroides (>60%) was revealed as the key bacterium for alginate conversion. A new Entner-Doudoroff pathway of alginate via 5-dehydro-4-deoxy-d-glucuronate (DDG) and 3-deoxy-d-glycerol-2,5-hexdiulosonate (DGH) as the intermediates to 2-keto-3-deoxy-gluconate (KDG) was constructed based on the metagenomic and metaproteomic analysis. In summary, this work documented the core enzymes and metabolic pathway for alginate degradation, which provides a good paradigm when analyzing the degrading mechanism of unacquainted substrates. The outcome will further contribute to the application of Bacteroides-dominated ADC on WAS methanogenesis in the future.


Assuntos
Alginatos , Redes e Vias Metabólicas , Bactérias , Ácido Glucurônico , Esgotos
4.
J Hazard Mater ; 419: 126498, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214849

RESUMO

The biological treatment of textile wastewater discharged from the dye baths and rinsing processes are challenged by both high temperatures of 50-80 °C and sulfate reduction. At present, most studies report azo dyes can be removed under mesophilic conditions, but the sulfate reduction is inevitable, consuming extra electron donors and producing undesirable sulfide. In this work, a Caldanaerobacter (> 97%) dominated extreme-thermophilic consortium (EX-AO7) was enriched using xylose as the substrate. The typical sulfate-reducing enzymes such as sulfite oxidase and sulfite reductase were not identified in enriched EX-AO7 by the metagenomic analysis. Then, the decolorization and sulfate reduction were expectedly decoupled by enriched EX-AO7 in extreme-thermophilic conditions, in which no sulfide was detected during the AO7 decolorization process. AO7 of 100 and 200 mg/L could be totally decolorized by EX-AO7. However, when 400 mg/L AO7 was added, the residual AO7 concentration was 22 ± 19 mg/L after 24 h, which was mainly due to the toxicity of AO7. Dosing zero-valent iron (ZVI) could also promote AO7 decolorization by 1.7 times since the addition of ZVI could provide a proliferative environment for EX-AO7 growth. Thereby, our work provides a new paradigm to promote the AZO dyes decolorization and minimize sulfate reduction.


Assuntos
Compostos Azo , Corantes , Benzenossulfonatos , Sulfatos
5.
Bioresour Technol ; 308: 123318, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32278998

RESUMO

Caproate production by mixed culture fermentation (MCF) is economically attractive. Xylose is known as the second most abundant sugar in nature, however, producing caproate from xylose is never reported. In this study, caproate production from xylose by mesophilic MCF was firstly investigated. The results showed that as pH decreasing to 5.0, the caproate concentration was 2.06 g/L in a batch reactor and was between 0.45 and 1.07 g/L in a continuously stirred reactor. Microbial analysis illustrated that Caproiciproducens and Clostridium_sensu_stricto_12, as two main identified caproate producers, occupied over 50% and around 10% of mixed culture, respectively. Thus, caproate production from xylose was proposed via the fatty acid biosynthesis pathway, not the well-known reverse ß-oxidation pathway. These unexpected differences from literatures gains more understanding about caproate production from organic substrates via MCF.


Assuntos
Caproatos , Xilose , Clostridium , Fermentação , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...