Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(16): 164301, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138394

RESUMO

The molecular dissociation energy has often been explained and discussed in terms of singlet bonds, formed by bounded pairs of valence electrons. In this work, we use a highly correlated resonating valence bond ansatz, providing a consistent paradigm for the chemical bond, where spin fluctuations are shown to play a crucial role. Spin fluctuations are known to be important in magnetic systems and correspond to the zero point motion of the spin waves emerging from a magnetic broken symmetry state. Within our ansatz, a satisfactory description of the carbon dimer is determined by the magnetic interaction of two carbon atoms with antiferromagnetically ordered S = 1 magnetic moments. This is a first step that, thanks to the highly scalable and efficient quantum Monte Carlo techniques, may open the door for understanding challenging complex systems containing atoms with large spins (e.g., transition metals).

2.
J Chem Theory Comput ; 16(10): 6114-6131, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32804497

RESUMO

We propose here a single Pfaffian correlated variational ansatz that dramatically improves the accuracy with respect to the single determinant one, while remaining at a similar computational cost. A much larger correlation energy is indeed determined by the most general two electron pairing function, including both singlet and triplet channels, combined with a many-body Jastrow factor, including all possible spin-spin, spin-density, and density-density terms. The main technical ingredient to exploit this accuracy is the use of the Pfaffian for antisymmetrizing a highly correlated pairing function, thus recovering the Fermi statistics for electrons with an affordable computational cost. Moreover, the application of the diffusion Monte Carlo, within the fixed node approximation, allows us to obtain very accurate binding energies for the first preliminary calculations reported in this study: C2, N2, and O2 and the benzene molecule. This is promising and remarkable, considering that they represent extremely difficult molecules even for computationally demanding multideterminant approaches, and opens therefore the way for realistic and accurate electronic simulations with an algorithm scaling at most as the fourth power of the number of electrons.

3.
J Chem Phys ; 152(20): 204121, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486669

RESUMO

TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational power of modern Graphics Processing Unit accelerators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...