Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 378: 114815, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762093

RESUMO

Effective data management and sharing have become increasingly crucial in biomedical research; however, many laboratory researchers lack the necessary tools and knowledge to address this challenge. This article provides an introductory guide into research data management (RDM), and the importance of FAIR (Findable, Accessible, Interoperable, and Reusable) data-sharing principles for laboratory researchers produced by practicing scientists. We explore the advantages of implementing organized data management strategies and introduce key concepts such as data standards, data documentation, and the distinction between machine and human-readable data formats. Furthermore, we offer practical guidance for creating a data management plan and establishing efficient data workflows within the laboratory setting, suitable for labs of all sizes. This includes an examination of requirements analysis, the development of a data dictionary for routine data elements, the implementation of unique subject identifiers, and the formulation of standard operating procedures (SOPs) for seamless data flow. To aid researchers in implementing these practices, we present a simple organizational system as an illustrative example, which can be tailored to suit individual needs and research requirements. By presenting a user-friendly approach, this guide serves as an introduction to the field of RDM and offers practical tips to help researchers effortlessly meet the common data management and sharing mandates rapidly becoming prevalent in biomedical research.


Assuntos
Pesquisa Biomédica , Gerenciamento de Dados , Disseminação de Informação , Humanos , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Gerenciamento de Dados/métodos , Disseminação de Informação/métodos , Pesquisadores
2.
Sci Rep ; 11(1): 3442, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564058

RESUMO

Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target.


Assuntos
Inteligência Artificial , Modelos Neurológicos , Traumatismos da Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Injeções Espinhais , Ratos Long-Evans , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Proteínas Recombinantes/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
3.
Exp Neurol ; 258: 112-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017892

RESUMO

The field of neuroimmunology is rapidly advancing. There is a growing appreciation for heterogeneity, both in inflammatory composition and region-specific inflammatory responses. This understanding underscores the importance of developing targeted immunomodulatory therapies for treating neurological disorders. Concerning neurotrauma, there is a dearth of publications directly comparing inflammatory responses in the brain and spinal cord after injury. The question therefore remains as to whether inflammatory cells responding to spinal cord vs. brain injury adopt similar functions and are therefore amenable to common therapies. In this review, we address this question while revisiting and modernizing the conclusions from publications that have directly compared inflammation across brain and spinal cord injuries. By examining molecular differences, anatomical variations, and inflammatory cell phenotypes between the injured brain and spinal cord, we provide insight into how neuroinflammation relates to neurotrauma and into fundamental differences between the brain and spinal cord.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...