Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 33(2): 281-294, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30004265

RESUMO

Biodegradable materials play a crucial role in both material and medical sciences and are frequently used as a primary commodity for implants generation. Due to their material inherent properties, they are supposed to be entirely resorbed by the patients' body after fulfilling their task as a scaffold. This makes a second intervention (e.g. for implant removal) redundant and significantly enhances a patient's post-operative life quality. At the moment, materials for resorbable and biodegradable implants (e.g. polylactic acid or poly-caprolactone polymers) are still intensively studied. They are able to provide mandatory demands such as mechanical strength and attributes needed for high-quality implants. Implants, however, not only need to be made of adequate material, but must also to be personalized in order to meet the customers' needs. Combining three dimensional-printing and high-resolution imaging technologies a new age of implant production comes into sight. Three dimensional images (e.g. magnetic resonance imaging or computed tomography) of tissue defects can be utilized as digital blueprints for personalized implants. Modern additive manufacturing devices are able to use a variety of materials to fabricate custom parts within short periods of time. The combination of high-quality resorbable materials and personalized three dimensional-printing for the custom application will provide the patients with the best suitable and sustainable implants. In this study, we evaluated and compared four resorbable and three dimensional printable materials for their in vitro biocompatibility, in vitro rate of degradation, cell adherence and behavior on these materials as well as support of osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The tests were conducted with model constructs of 1 cm2 surface area fabricated with fused deposition modeling three dimensional-printing technology.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Alicerces Teciduais/química , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Humanos , Teste de Materiais , Camundongos , Impressão Tridimensional
2.
Langmuir ; 32(35): 8951-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529799

RESUMO

Electrospun submicrometer-sized poly(ε-caprolactone) (PCL) meshes and nanosized multiwalled carbon nanotubes (MWCNTs) were used as a template for preparing porous and interconnected inorganic-organic hybrid materials composed of CaCO3. Herein, we describe the proportion and incorporation method of submicrometer-sized plasma-treated PCL meshes over areas >1 mm(2) with CaCO3 using three crystallization methods including the use of poly(acrylic acid) (PAA). We found that flexible and rigid acid-functionalized MWCNTs showed a clear capacity and effects to penetrate calcite particles. MWCNTs interacted differently with the individual growth planes of CaCO3, indicating that fibers can undergo changes depending on sulfonate or carboxylate groups, adopt different orientations in solution, and thereby elicit changes in CaCO3 morphology. In summary, the use of PCL and acidic MWCNT fibers as an additive for substrate templates and experimental crystallization provides a viable approach for studying various aspects of biomineralization, including the production of controlled particles, control of porosities, and defined morphologies at microscale and nanoscale levels.

3.
Macromol Rapid Commun ; 31(1): 59-64, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21590837

RESUMO

Bimodal fiber meshes with fiber diameters differing by one order of magnitude, are electrospun in a simple one-step process, using a standard single syringe electrospin setup. The nano- and microfiber meshes combine the benefits of nanofibers (cell adhesion, proliferation) with those of microfibers (open structure, large pore size) and are therefore interesting as scaffolds for cellular infiltration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...