Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(11): 2865-2868, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824278

RESUMO

We report the generation of a broadband supercontinuum (SC) from 790 to 2900 nm in a tellurite graded-index (GRIN) multimode fiber with a nanostructured core. We study the SC dynamics in different dispersion regimes and observe near-single-mode spatial intensity distribution at high input energy values. Numerical simulations of the (3 + 1)D generalized nonlinear Schrödinger equation are in good agreement with our experiments. Our results open a new avenue for the generation of high-power mid-infrared SC sources in soft-glass fibers.

2.
Light Sci Appl ; 13(1): 124, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806486

RESUMO

Ghost imaging in the time domain allows for reconstructing fast temporal objects using a slow photodetector. The technique involves correlating random or pre-programmed probing temporal intensity patterns with the integrated signal measured after modulation by the temporal object. However, the implementation of temporal ghost imaging necessitates ultrafast detectors or modulators for measuring or pre-programming the probing intensity patterns, which are not available in all spectral regions especially in the mid-infrared range. Here, we demonstrate a frequency downconversion temporal ghost imaging scheme that enables to extend the operation regime to arbitrary wavelengths regions where fast modulators and detectors are not available. The approach modulates a signal with temporal intensity patterns in the near-infrared and transfers the patterns to an idler via difference-frequency generation in a nonlinear crystal at a wavelength where the temporal object can be retrieved. As a proof-of-concept, we demonstrate computational temporal ghost imaging in the mid-infrared with operating wavelength that can be tuned from 3.2 to 4.3 µm. The scheme is flexible and can be extended to other regimes. Our results introduce new possibilities for scan-free pump-probe imaging and the study of ultrafast dynamics in spectral regions where ultrafast modulation or detection is challenging such as the mid-infrared and THz regions.

3.
Opt Lett ; 48(17): 4512-4515, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656541

RESUMO

We report the generation of a spectrally tailored supercontinuum using Fourier-domain pulse shaping of femtosecond pulses injected into a highly nonlinear fiber controlled by a genetic algorithm. User-selectable spectral enhancement is demonstrated over the 1550-2000-nm wavelength range, with the ability to both select a channel with target central wavelength and bandwidth in the range of 1-5 nm. The spectral enhancement factor relative to unshaped input pulses is typically ∼5-20 in the range 1550-1800 nm and increases for longer wavelengths, exceeding a factor of 160 around 2000 nm. We also demonstrate results where the genetic algorithm is applied to the enhancement of up to four spectral channels simultaneously.

4.
Opt Express ; 31(15): 23889-23896, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475229

RESUMO

We report real-time monitoring of coarse aerosol particle distribution in a 9 m wide full-scale industrial boiler using a broadband supercontinuum lidar. The technique utilizes the light backscattered from the aerosol to map the extinction profile using the Klett inversion method, with measured extinction values of 0.04 - 0.2 m-1 across the furnace. The technique further exploits differential absorption of water molecules in the 1.25 - 1.5 µm region to map the water vapor concentration profile in the furnace up to a distance of 3.9 m with a spatial resolution of 30 cm. We also take advantage of the strong reflection from the boiler back-wall to simultaneously measure the average water vapor temperature and concentration in the boiler in good agreement with reference readings from the boiler. Our results open novel perspectives for versatile 3D profiling of flue gas parameters and other industrial process analysis.

5.
Sci Rep ; 13(1): 10462, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380725

RESUMO

We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrödinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.

6.
Sci Rep ; 13(1): 1865, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725970

RESUMO

The noise-like pulse regime of optical fiber lasers is highly complex, and associated with multiscale emission of random sub-picosecond pulses underneath a much longer envelope. With the addition of highly nonlinear fiber in the cavity, noise-like pulse lasers can also exhibit supercontinuum broadening and the generation of output spectra spanning 100's of nm. Achieving these broadest bandwidths, however, requires careful optimization of the nonlinear polarization rotation based saturable absorber, which involves a very large potential parameter space. Here we study the spectral characteristics of a broadband noise-like pulse laser by scanning the laser operation over a random sample of 50,000 polarization settings, and we quantify that these broadest bandwidths are generated in only [Formula: see text] 0.5% of cases. We also show that a genetic algorithm can replace trial and error optimization to align the cavity for these broadband operating states.

8.
Phys Chem Chem Phys ; 24(32): 19481-19487, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929451

RESUMO

We report multipass broadband photoacoustic spectroscopy of trace gases in the mid-infrared. The measurement principle of the sensor relies on supercontinuum-based Fourier transform photoacoustic spectroscopy (FT-PAS), in which a scanning interferometer modulates the intensity of a mid-infrared supercontinuum light source and a cantilever microphone is employed for sensitive photoacoustic detection. With a custom-built external Herriott cell, the supercontinuum beam propagates ten times through a miniature and acoustically non-resonant gas cell. The performance of the FT-PAS system is demonstrated by measuring the fundamental C-H stretch bands of various hydrocarbons. A noise equivalent detection limit of 11 ppb is obtained for methane (40 s averaging time, 15 µW cm-1 incident power spectral density, 4 cm-1 resolution), which is an improvement by a factor of 12 compared to the best previous FT-PAS systems. High linearity and good stability of the sensor provide reliable identification of individual species from a gas mixture with strong spectral overlap, laying the foundation for sensitive and selective multi-species detection in small sample volumes.


Assuntos
Gases , Metano , Gases/química , Análise Espectral/métodos
9.
Sci Rep ; 12(1): 12711, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882898

RESUMO

We show using numerical simulations that data driven discovery using sparse regression can be used to extract the governing differential equation model of ideal four-wave mixing in a nonlinear Schrödinger equation optical fibre system. Specifically, we consider the evolution of a strong single frequency pump interacting with two frequency detuned sidebands where the dynamics are governed by a reduced Hamiltonian system describing pump-sideband coupling. Based only on generated dynamical data from this system, sparse regression successfully recovers the underlying physical model, fully capturing the dynamical landscape on both sides of the system separatrix. We also discuss how analysing an ensemble over different initial conditions allows us to reliably identify the governing model in the presence of noise. These results extend the use of data driven discovery to ideal four-wave mixing in nonlinear Schrödinger equation systems.

10.
Opt Express ; 30(9): 15060-15072, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473237

RESUMO

Neural networks have been recently shown to be highly effective in predicting time-domain properties of optical fiber instabilities based only on analyzing spectral intensity profiles. Specifically, from only spectral intensity data, a suitably trained neural network can predict temporal soliton characteristics in supercontinuum generation, as well as the presence of temporal peaks in modulation instability satisfying rogue wave criteria. Here, we extend these previous studies of machine learning prediction for single-pass fiber propagation instabilities to the more complex case of noise-like pulse dynamics in a dissipative soliton laser. Using numerical simulations of highly chaotic behaviour in a noise-like pulse laser operating around 1550 nm, we generate large ensembles of spectral and temporal data for different regimes of operation, from relatively narrowband laser spectra of 70 nm bandwidth at the -20 dB level, to broadband supercontinuum spectra spanning 200 nm at the -20 dB level and with dispersive wave and long wavelength Raman extension spanning from 1150-1700 nm. Using supervised learning techniques, a trained neural network is shown to be able to accurately correlate spectral intensity profiles with time-domain intensity peaks and to reproduce the associated temporal intensity probability distributions.

11.
Nat Commun ; 13(1): 2126, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440639

RESUMO

The generation of a two-octave supercontinuum from the visible to mid-infrared (700-2800 nm) in a non-silica graded-index multimode fiber is reported. The fiber design is based on a nanostructured core comprised of two types of drawn lead-bismuth-gallate glass rods with different refractive indices. This yields an effective parabolic index profile and ten times increased nonlinearity when compared to silica fibers. Using femtosecond pulse pumping at wavelengths in both normal and anomalous dispersion regimes, a detailed study is carried out into the supercontinuum generating mechanisms and instabilities seeded by periodic self-imaging. Significantly, suitable injection conditions in the high power regime are found to result in the output beam profile showing clear signatures of beam self-cleaning from nonlinear mode mixing. Experimental observations are interpreted using spatio-temporal 3+1D numerical simulations of the generalized nonlinear Schrödinger equation, and simulated spectra are in excellent agreement with experiment over the full two-octave spectral bandwidth. Experimental comparison with the generation of supercontinuum in a silica graded-index multimode fiber shows that the enhanced nonlinear refractive index of the lead-bismuth-gallate fiber yields a spectrum with a significantly larger bandwidth. These results demonstrate a new pathway towards the generation of bright, ultrabroadband light sources in the mid-infrared.

12.
Opt Lett ; 47(7): 1713-1716, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363715

RESUMO

We investigate the noise transfer mechanism from the light source intensity fluctuations to the acoustic signal in Fourier transform photoacoustic spectroscopy (FT-PAS). This noise coupling is expected to be reduced in FT-PAS compared with conventional Fourier transform spectroscopy, as only the specific spectral components that are absorbed by the probed sample contribute to the noise level. We employ an incoherent supercontinuum (SC) light source in our experiments and observe a linear relation between the sample gas concentration and the detected noise level, which significantly reduces the influence of the SC noise on the detection limit. Based on our experimental results, we derive a model for the noise level, which establishes the foundation for practical sensitive implementation of FT-PAS.


Assuntos
Acústica , Interferometria , Análise de Fourier , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
Opt Lett ; 47(7): 1741, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363723

RESUMO

We present an erratum to our Letter [Opt. Lett.47, 802 (2022)10.1364/OL.448571]. This erratum corrects an error in the sign of one of the higher-order dispersion coefficient used in the simulations of Figs. 2 and 4, as well as in Figs. S1 and S3. The simulations in the original Letter were performed using the correct value, and therefore this correction does not affect any of the results and conclusions of the original Letter.


Assuntos
Redes Neurais de Computação , Dinâmica não Linear
14.
Opt Lett ; 47(4): 802-805, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167529

RESUMO

The nonlinear propagation of ultrashort pulses in optical fibers depends sensitively on the input pulse and fiber parameters. As a result, the optimization of propagation for specific applications generally requires time-consuming simulations based on the sequential integration of the generalized nonlinear Schrödinger equation (GNLSE). Here, we train a feed-forward neural network to learn the differential propagation dynamics of the GNLSE, allowing emulation of direct numerical integration of fiber propagation, and particularly the highly complex case of supercontinuum generation. Comparison with a recurrent neural network shows that the feed-forward approach yields faster training and computation, and reduced memory requirements. The approach is generic and can be extended to other physical systems.


Assuntos
Modelos Teóricos , Dinâmica não Linear , Simulação por Computador , Redes Neurais de Computação , Fibras Ópticas
15.
Nat Commun ; 12(1): 5567, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552078

RESUMO

Understanding dynamical complexity is one of the most important challenges in science. Significant progress has recently been made in optics through the study of dissipative soliton laser systems, where dynamics are governed by a complex balance between nonlinearity, dispersion, and energy exchange. A particularly complex regime of such systems is associated with noise-like pulse multiscale instabilities, where sub-picosecond pulses with random characteristics evolve chaotically underneath a much longer envelope. However, although observed for decades in experiments, the physics of this regime remains poorly understood, especially for highly-nonlinear cavities generating broadband spectra. Here, we address this question directly with a combined numerical and experimental study that reveals the physical origin of instability as nonlinear soliton dynamics and supercontinuum turbulence. Real-time characterisation reveals intracavity extreme events satisfying statistical rogue wave criteria, and both real-time and time-averaged measurements are in quantitative agreement with modelling.

16.
Opt Express ; 29(14): 21348-21357, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265924

RESUMO

We experimentally demonstrate the generation of a short-wave infrared supercontinuum in an uncladded silicon nitride (Si3N4) waveguide with extreme polarization sensitivity at the pumping wavelength of 2.1 µm. The air-clad waveguide is specifically designed to yield anomalous dispersion regime for transverse electric (TE) mode excitation and all-normal-dispersion (ANDi) at near-infrared wavelengths for the transverse magnetic (TM) mode. Dispersion engineering of the polarization modes allows for switching via simple adjustment of the input polarization state from an octave-spanning soliton fission-driven supercontinuum with fine spectral structure to a flat and smooth ANDi supercontinuum dominated by a self-phase modulation mechanism (SPM). Such a polarization sensitive supercontinuum source offers versatile applications such as broadband on-chip sensing to pulse compression and few-cycle pulse generation. Our experimental results are in very good agreement with numerical simulations.

17.
Sci Rep ; 11(1): 8403, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863929

RESUMO

We demonstrate computational spectral-domain ghost imaging by encoding complementary Fourier patterns directly onto the spectrum of a superluminescent laser diode using a programmable spectral filter. Spectral encoding before the object enables uniform spectral illumination across the beam profile, removing the need for light collection optics and yielding increased signal-to-noise ratio. In addition, the use of complementary Fourier patterns allows reduction of deleterious of parasitic light effects. As a proof-of-concept, we measure the wavelength-dependent transmission of a Michelson interferometer and a wavelength-division multiplexer. Our results open new perspectives for remote broadband spectral measurements.

18.
Opt Lett ; 45(11): 3103-3106, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479470

RESUMO

We demonstrate the generation of a low-noise, octave-spanning mid-infrared supercontinuum from 1700 to 4800 nm by injecting femtosecond pulses into the normal dispersion regime of a multimode step-index chalcogenide fiber with 100 µm core diameter. We conduct a systematic study of the intensity noise across the supercontinuum spectrum and show that the initial fluctuations of the pump laser are at most amplified by a factor of three. We also perform a comparison with the noise characteristics of an octave-spanning supercontinuum generated in the anomalous dispersion regime of a multimode fluoride fiber with similar core size and show that the normal dispersion supercontinuum in the multimode chalcogenide fiber has superior noise characteristics. Our results open up novel perspectives for many practical applications such as long-distance remote sensing where high power and low noise are paramount.

19.
Sci Rep ; 10(1): 9596, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533021

RESUMO

Supercontinuum generation is a highly nonlinear process that exhibits unstable and chaotic characteristics when developing from long pump pulses injected into the anomalous dispersion regime of an optical fiber. A particular feature associated with this regime is the long-tailed "rogue wave"-like statistics of the spectral intensity on the long-wavelength edge of the supercontinuum, linked to the generation of a small number of "rogue solitons" with extreme red-shifts. Whilst the statistical properties of rogue solitons can be conveniently measured in the spectral domain using the real-time dispersive Fourier transform technique, we cannot use this technique to determine any corresponding temporal properties since it only records the spectral intensity and one loses information about the spectral phase. And direct temporal characterization using methods such as the time-lens has resolution of typically 100's of fs, precluding the measurement of solitons which possess typically much shorter durations. Here, we solve this problem by using machine learning. Specifically, we show how supervised learning can train a neural network to predict the peak power, duration, and temporal walk-off with respect to the pump pulse position of solitons at the edge of a supercontinuum spectrum from only the supercontinuum spectral intensity without phase information. Remarkably, the network accurately predicts soliton characteristics for a wide range of scenarios, from the onset of spectral broadening dominated by pure modulation instability to near octave-spanning supercontinuum with distinct rogue solitons.

20.
Opt Express ; 28(7): 9957-9964, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225594

RESUMO

Ghost imaging in the time domain has opened up new possibilities to retrieve ultrafast waveforms. A pre-requisite to ghost imaging in the time domain is a light source with random temporal intensity fluctuations that are fully uncorrelated over the duration of the temporal waveform being imaged. Here, we show that random fiber lasers are excellent candidates for ghost imaging in the time domain. We study the temporal correlations of the intensity fluctuations of a random fiber laser in different operating regimes and compare its performance in temporal ghost imaging configurations with that of a conventional multi-mode cavity-based fiber laser. Our results demonstrate that random fiber lasers can achieve superior performance for ghost imaging as compared to cavity-based fiber lasers where strong correlations at the cavity round-trip time can yield artefacts for waveforms of long duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...