Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 859812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464084

RESUMO

Obesity and/or metabolic diseases are frequently associated with chronic kidney disease and several factors associated with obesity may contribute to proteinuria and extracellular matrix production. Mineralocorticoid receptor antagonists have proven their clinical efficacy in diabetic kidney disease with preclinical data suggesting that they may also be efficient in non-diabetic chronic kidney disease associated to metabolic diseases. In the present study we developed a novel mouse model combining severe nephron reduction and High Fat Diet challenge that led to chronic kidney disease with metabolic alterations. We showed that the Mineralocorticoid Receptor antagonist canrenoate improved metabolic function, reduced albuminuria and prevented the synergistic effect of high fat diet on renal fibrosis and inflammation in chronic kidney disease mice.

2.
Hypertension ; 79(2): 352-364, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34794340

RESUMO

NGAL (neutrophil gelatinase-associated lipocalin; or lipocalin 2, Lcn2) is a novel mineralocorticoid target in the cardiovascular system. We showed that Lcn2 gene invalidation protects against proteinuria and renal injury upon mineralocorticoid excess and we hypothesized that NGAL produced from macrophages promotes the expression of chemoattractant molecules involved these renal lesions. The role of NGAL was analyzed using myeloid-specific (MΦ KO NGAL) Lcn2 knockout mice challenged with uni-nephrectomy, aldosterone, and salt (NAS) for 6 weeks. The role of the CCL5 (chemokine ligand 5) and IL4 (interleukin 4) in kidney fibrosis was studied by administration of the CCL5 receptor antagonist maraviroc or by injections of an anti-IL4 neutralizing antibody. In CTL mice, NAS increased the renal expression of extracellular matrix proteins, such as collagen I, αSMA, and fibronectin associated with interstitial fibrosis which were blunted in MΦ KO NGAL mice. The expression of CCL5 was blunted in sorted macrophages from MΦ KO NGAL mice challenged by NAS and in macrophages obtained from KO NGAL mice and challenged ex vivo with aldosterone and salt. The pharmacological blockade of the CCL5 receptor reduced renal fibrosis and the CD4+ Th cell infiltration induced by NAS. Neutralization of IL4 in NAS mice blunted kidney fibrosis and the overexpression of profibrotic proteins, such as collagen I, αSMA, and fibronectin. In conclusion, NGAL produced by macrophages plays a critical role in renal fibrosis and modulates the CCL5/IL4 pathway in mice exposed to mineralocorticoid excess.


Assuntos
Quimiocina CCL5/metabolismo , Interleucina-4/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Lipocalina-2/metabolismo , Macrófagos/metabolismo , Células Th2/metabolismo , Animais , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Nefropatias/patologia , Lipocalina-2/genética , Masculino , Camundongos , Camundongos Knockout
3.
Antioxidants (Basel) ; 10(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439522

RESUMO

We have evaluated the role of mitochondrial oxidative stress and its association with endoplasmic reticulum (ER) stress activation in the progression of obesity-related cardiovascular fibrosis. MitoQ (200 µM) was orally administered for 7 weeks to male Wistar rats that were fed a high-fat diet (HFD, 35% fat) or a control diet (CT, 3.5% fat). Obese animals presented cardiovascular fibrosis accompanied by increased levels of extracellular matrix proteins and profibrotic mediators. These alterations were associated with ER stress activation characterized by enhanced levels (in heart and aorta vs. CT group, respectively) of immunoglobulin binding protein (BiP; 2.1-and 2.6-fold, respectively), protein disulfide-isomerase A6 (PDIA6; 1.9-fold) and CCAAT-enhancer-binding homologous protein (CHOP; 1.5- and 1.8-fold, respectively). MitoQ treatment was able to prevent (p < 0.05) these modifications at cardiac and aortic levels. MitoQ (5 nM) and the ER stress inhibitor, 4-phenyl butyric acid (4 µM), were able to block the prooxidant and profibrotic effects of angiotensin II (Ang II, 10-6 M) in cardiac and vascular cells. Therefore, the data show a crosstalk between mitochondrial oxidative stress and ER stress activation, which mediates the development of cardiovascular fibrosis in the context of obesity and in which Ang II can play a relevant role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA