Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nat Commun ; 15(1): 3140, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605083

RESUMO

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.


Assuntos
Edição de Genes , Rim , Animais , Suínos , Humanos , Animais Geneticamente Modificados , Xenoenxertos , Transplante Heterólogo , Rejeição de Enxerto/genética
2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559147

RESUMO

Uterine natural killer cells (uNKs) are a tissue resident lymphocyte population that are critical for pregnancy success. Although mouse models have demonstrated that NK deficiency results in abnormal placentation and poor pregnancy outcomes, the generalizability of this knowledge to humans remains unclear. Here we identify uterus transplant (UTx) recipients as a human population with reduced endometrial NK cells and altered pregnancy phenotypes. We further show that the NK reduction in UTx is due to impaired transcriptional programming of NK tissue residency due to blockade of the transcription factor nuclear factor of activated T cells (NFAT). NFAT-dependent genes played a role in multiple molecular circuits governing tissue residency in uNKs, including early residency programs involving AP-1 transcription factors as well as TGFß-mediated upregulation of surface integrins. Collectively, our data identify a previously undescribed role for NFAT in uterine NK tissue residency and provide novel mechanistic insights into the biologic basis of pregnancy complications due to alteration of tissue resident NK subsets in humans. One Sentence Summary: Role of NFAT in uterine NK cell tissue residency.

3.
Am J Physiol Renal Physiol ; 326(5): F839-F854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38450434

RESUMO

Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.


Assuntos
Ácidos Aristolóquicos , Diferenciação Celular , Rim , Células T de Memória , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Masculino , Ácidos Aristolóquicos/toxicidade , Rim/imunologia , Rim/metabolismo , Rim/patologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Transgênicos , Memória Imunológica , Modelos Animais de Doenças , Camundongos
4.
J Pharmacol Exp Ther ; 388(2): 605-612, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37699712

RESUMO

Arsenicals are deadly chemical warfare agents that primarily cause death through systemic capillary fluid leakage and hypovolemic shock. Arsenical exposure is also known to cause acute kidney injury, a condition that contributes to arsenical-associated death due to the necessity of the kidney in maintaining whole-body fluid homeostasis. Because of the global health risk that arsenicals pose, a nuanced understanding of how arsenical exposure can lead to kidney injury is needed. We used a nontargeted transcriptional approach to evaluate the effects of cutaneous exposure to phenylarsine oxide, a common arsenical, in a murine model. Here we identified an upregulation of metabolic pathways such as fatty acid oxidation, fatty acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR)-α signaling in proximal tubule epithelial cell and endothelial cell clusters. We also revealed highly upregulated genes such as Zbtb16, Cyp4a14, and Pdk4, which are involved in metabolism and metabolic switching and may serve as future therapeutic targets. The ability of arsenicals to inhibit enzymes such as pyruvate dehydrogenase has been previously described in vitro. This, along with our own data, led us to conclude that arsenical-induced acute kidney injury may be due to a metabolic impairment in proximal tubule and endothelial cells and that ameliorating these metabolic effects may lead to the development of life-saving therapies. SIGNIFICANCE STATEMENT: In this study, we demonstrate that cutaneous arsenical exposure leads to a transcriptional shift enhancing fatty acid metabolism in kidney cells, indicating that metabolic alterations might mechanistically link topical arsenical exposure to acute kidney injury. Targeting metabolic pathways may generate promising novel therapeutic approaches in combating arsenical-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Arsenicais , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Rim/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Arsenicais/efeitos adversos , Arsenicais/metabolismo
5.
Surgery ; 175(4): 1244-1246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123371

RESUMO

Building a competitive research program within a department of surgery requires a significant commitment by the department and the institution to provide the necessary resources for faculty recruitment, retention of current faculty, and physical space/infrastructure to support research activities. We expanded the academic footprint of our department as demonstrated by the expansion of the department of surgery research funding by 13-fold over a period of 7 years, resulting in an increase in national ranking from 55th place to 10th place in the National Institutes of Health extramural funding. This required attention to multiple factors that affect the ability of faculty to establish and maintain competitive research programs. We executed a plan that established a leadership structure that coordinates resources and provides mentorship to faculty. The department invested heavily in the recruitment of new faculty, especially junior faculty, but also some mid-career and senior investigators to develop a critical mass in specific areas for competitive large grant and program project applications. The pipeline of new trainees interested in research was augmented by successful training grant applications that created a mechanism by which residents and fellows can pursue research for periods ranging from a few weeks to 2 years. Administrative infrastructure was created to assist faculty in grant submissions as well as post-award management. Finally, in partnership with institutional leadership, the department acquired the physical space necessary to support both dry-lab and wet-lab research activities. To achieve true excellence, an academic surgery department must maintain excellence in both the clinical and research areas, which, in the context of an academic medical center, are not separate goals.


Assuntos
Pesquisa Biomédica , Mentores , Estados Unidos , Humanos , Docentes , National Institutes of Health (U.S.) , Centros Médicos Acadêmicos , Liderança
6.
JTCVS Tech ; 19: 86-92, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324339

RESUMO

Objective: Pericardial fluid biomarkers reflect the physiologic state of the myocardium. Previously, we showed a sustained increase in pericardial fluid biomarkers compared with blood in the 48 hours after cardiac surgery. We assess the feasibility of analyzing 9 common cardiac biomarkers from pericardial fluid collected during cardiac surgery and test a preliminary hypothesis of association between the most common biomarkers, troponin and brain natriuretic peptide, and length of stay after surgery. Methods: We prospectively enrolled 30 patients aged 18 years or more undergoing coronary artery or valvular surgery. Patients with ventricular assist devices, atrial fibrillation surgery, thoracic aorta surgery, redo surgery, concomitant noncardiac surgery, and preoperative inotropic support were excluded. Before pericardial excision during surgery, a 1-cm pericardial incision was made to insert an 18-gauge catheter and collect 10 mL of pericardial fluid. Concentrations of 9 established biomarkers of cardiac injury or inflammation including brain natriuretic peptide and troponin were measured. Zero truncated Poisson regression adjusted for Society of Thoracic Surgery Preoperative Risk of Mortality tested for a preliminary association between pericardial fluid biomarkers and length of stay. Results: Pericardial fluid was collected and pericardial fluid biomarkers resulted for all patients. Adjusted for Society of Thoracic Surgery risk, brain natriuretic peptide, and troponin were associated with increased intensive care unit and overall hospital length of stay. Conclusions: In 30 patients, pericardial fluid was obtained and analyzed for cardiac biomarkers. Adjusting for Society of Thoracic Surgery risk, pericardial fluid troponin and brain natriuretic peptide were preliminarily associated with increased length of stay. Further investigation is needed to validate this finding and to investigate the potential clinical utility of pericardial fluid biomarkers.

7.
Front Cardiovasc Med ; 10: 1132786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265571

RESUMO

Introduction: Chymase is a highly destructive serine protease rapidly neutralized in the circulation by protease inhibitors. Here we test whether pericardial fluid (PCF) chymase activation and other inflammatory biomarkers determine intensive care unit length of stay, and explore mechanisms of chymase delivery by extracellular vesicles to the heart. Methods: PCF was collected from adult patients (17 on-pump; 13 off-pump) 4 h after cardiac surgery. Extracellular vesicles (EVs) containing chymase were injected into Sprague-Dawley rats to test for their ability to deliver chymase to the heart. Results: The mean intensive care unit (ICU) stay and mean total length of stay was 2.17 ± 3.8 days and 6.41 ± 1.3 days respectively. Chymase activity and 32 inflammatory markers did not differ in on-pump vs. off-pump cardiac surgery. Society of Thoracic Surgeons Predicted Risk of Morbidity and Mortality Score (STS-PROM), 4-hour post-surgery PCF chymase activity and C-X-C motif chemokine ligand 6 (CXCL6) were all independent predictors of ICU and total hospital length of stay by univariate analysis. Mass spectrometry of baseline PCF shows the presence of serine protease inhibitors that neutralize chymase activity. The compartmentalization of chymase within and on the surface of PCF EVs was visualized by immunogold labeling and transmission electron microscopy. A chymase inhibitor prevented EV chymase activity (0.28 fmol/mg/min vs. 14.14 fmol/mg/min). Intravenous injection of PCF EVs obtained 24 h after surgery into Sprague Dawley rats shows diffuse human chymase uptake in the heart with extensive cardiomyocyte damage 4 h after injection. Discussion: Early postoperative PCF chymase activation underscores its potential role in cardiac damage soon after on- or off-pump cardiac surgery. In addition, chymase in extracellular vesicles provides a protected delivery mechanism from neutralization by circulating serine protease inhibitors.

8.
Mol Med ; 29(1): 67, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217845

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic human diseases. It is mostly caused by pathogenic variants in PKD1 or PKD2 genes that encode interacting transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2). Among many pathogenic processes described in ADPKD, those associated with cAMP signaling, inflammation, and metabolic reprogramming appear to regulate the disease manifestations. Tolvaptan, a vasopressin receptor-2 antagonist that regulates cAMP pathway, is the only FDA-approved ADPKD therapeutic. Tolvaptan reduces renal cyst growth and kidney function loss, but it is not tolerated by many patients and is associated with idiosyncratic liver toxicity. Therefore, additional therapeutic options for ADPKD treatment are needed. METHODS: As drug repurposing of FDA-approved drug candidates can significantly decrease the time and cost associated with traditional drug discovery, we used the computational approach signature reversion to detect inversely related drug response gene expression signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS) database and identified compounds predicted to reverse disease-associated transcriptomic signatures in three publicly available Pkd2 kidney transcriptomic data sets of mouse ADPKD models. We focused on a pre-cystic model for signature reversion, as it was less impacted by confounding secondary disease mechanisms in ADPKD, and then compared the resulting candidates' target differential expression in the two cystic mouse models. We further prioritized these drug candidates based on their known mechanism of action, FDA status, targets, and by functional enrichment analysis. RESULTS: With this in-silico approach, we prioritized 29 unique drug targets differentially expressed in Pkd2 ADPKD cystic models and 16 prioritized drug repurposing candidates that target them, including bromocriptine and mirtazapine, which can be further tested in-vitro and in-vivo. CONCLUSION: Collectively, these results indicate drug targets and repurposing candidates that may effectively treat pre-cystic as well as cystic ADPKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Reposicionamento de Medicamentos , Expressão Gênica , Rim/metabolismo , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/complicações , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Tolvaptan/farmacologia , Tolvaptan/uso terapêutico , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
9.
Front Immunol ; 14: 1082078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256130

RESUMO

Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.


Assuntos
Macrófagos , Monócitos , Camundongos , Animais , Macrófagos/metabolismo , Monócitos/metabolismo , Rim/metabolismo , Receptores de Quimiocinas/metabolismo , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo
10.
Res Sq ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711785

RESUMO

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. We transplanted a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and studied the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells were uncommon in the porcine kidney cortex early after xenotransplantation and consisted of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages expressed genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft was detected. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression is sufficient to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.

11.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457161

RESUMO

Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim , Macrófagos , Camundongos Knockout , Biomarcadores , Modelos Animais de Doenças
12.
Semin Nephrol ; 42(3): 151276, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36435683

RESUMO

Kidney resident macrophages (KRMs) are involved in homeostasis, phagocytosis, defense against infectious agents, response to insults, inflammation, and tissue repair. They also play critical roles in the pathogenesis and recovery from many kidney diseases such as acute kidney injury. KRMs historically have been studied as one homogenous population, but the wide-ranging roles and phenotypes observed suggest that there is greater heterogeneity than previously understood. Advancements in RNA sequencing technologies (single-cell RNA sequencing and spatial transcriptomics) have identified specific subsets of KRMs that are molecularly, functionally, and spatially distinct with dynamic changes after kidney injury. Multiple studies have identified unique markers that represent these subpopulations, permitting further characterization of the function and roles they play in the kidney. Understanding the diversity of KRM subpopulations will be key in the development of novel therapies used in treating kidney diseases and promoting kidney health.


Assuntos
Injúria Renal Aguda , Macrófagos , Humanos , Rim/patologia , Injúria Renal Aguda/patologia , Inflamação , Fenótipo
13.
Antioxidants (Basel) ; 11(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36290611

RESUMO

Acute kidney injury (AKI) is a major public health concern with significant morbidity and mortality and no current treatments beyond supportive care and dialysis. Preclinical studies have suggested that heme-oxygenase-1 (HO-1), an enzyme that catalyzes the breakdown of heme, has promise as a potential therapeutic target for AKI. Clinical trials involving HO-1 products (biliverdin, carbon monoxide, and iron), however, have not progressed beyond the Phase ½ level. We identified small-molecule inducers of HO-1 that enable us to exploit the full therapeutic potential of HO-1, the combination of its products, and yet-undefined effects of the enzyme system. Through cell-based, high-throughput screens for induction of HO-1 driven by the human HO-1 promoter/enhancer, we identified two novel small molecules and broxaldine (an FDA-approved drug) for further consideration as candidate compounds exhibiting an Emax ≥70% of 5 µM hemin and EC50 <10 µM. RNA sequencing identified shared binding motifs to NRF2, a transcription factor known to regulate antioxidant genes, including HMOX1. In vitro, the cytoprotective function of the candidates was assessed against cisplatin-induced cytotoxicity and apoptosis. In vivo, delivery of a candidate compound induced HO-1 expression in the kidneys of mice. This study serves as the basis for further development of small-molecule HO-1 inducers as preventative or therapeutic interventions for a variety of pathologies, including AKI.

14.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36066976

RESUMO

The kidney contains a population of resident macrophages from birth that expands as it grows and forms a contiguous network throughout the tissue. Kidney-resident macrophages (KRMs) are important in homeostasis and the response to acute kidney injury. While the kidney contains many microenvironments, it is unknown whether KRMs are a heterogeneous population differentiated by function and location. We combined single-cell RNA-Seq (scRNA-Seq), spatial transcriptomics, flow cytometry, and immunofluorescence imaging to localize, characterize, and validate KRM populations during quiescence and following 19 minutes of bilateral ischemic kidney injury. scRNA-Seq and spatial transcriptomics revealed 7 distinct KRM subpopulations, which are organized into zones corresponding to regions of the nephron. Each subpopulation was identifiable by a unique transcriptomic signature, suggesting distinct functions. Specific protein markers were identified for 2 clusters, allowing analysis by flow cytometry or immunofluorescence imaging. Following injury, the original localization of each subpopulation was lost, either from changing locations or transcriptomic signatures. The original spatial distribution of KRMs was not fully restored for at least 28 days after injury. The change in KRM localization confirmed a long-hypothesized dysregulation of the local immune system following acute injury and may explain the increased risk for chronic kidney disease.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Macrófagos/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Citometria de Fluxo , Insuficiência Renal Crônica/metabolismo
15.
Front Med (Lausanne) ; 9: 894521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160140

RESUMO

Acute kidney injury (AKI) is a serious complication of rhabdomyolysis that significantly impacts survival. Myoglobin released from the damaged muscle accumulates in the kidney, causing heme iron-mediated oxidative stress, tubular cell death, and inflammation. In response to injury, myeloid cells, specifically neutrophils and macrophages, infiltrate the kidneys, and mediate response to injury. Ferritin, comprised of ferritin light chain and ferritin heavy chain (FtH), is vital for intracellular iron handling. Given the dominant role of macrophages and heme-iron burden in the pathogenesis of rhabdomyolysis, we studied the functional role of myeloid FtH in rhabdomyolysis-induced AKI and subsequent fibrosis. Using two models of rhabdomyolysis induced AKI, we found that during the acute phase, myeloid FtH deletion did not impact rhabdomyolysis-induced kidney injury, cell death or cell proliferation, suggesting that tubular heme burden is the dominant injury mechanism. We also determined that, while the kidney architecture was markedly improved after 28 days, tubular casts persisted in the kidneys, suggesting sustained damage or incomplete recovery. We further showed that rhabdomyolysis resulted in an abundance of disparate intra-renal immune cell populations, such that myeloid populations dominated during the acute phase and lymphoid populations dominated in the chronic phase. Fibrotic remodeling was induced in both genotypes at 7 days post-injury but continued to progress only in wild-type mice. This was accompanied by an increase in expression of pro-fibrogenic and immunomodulatory proteins, such as transforming growth factor-ß, S100A8, and tumor necrosis factor-α. Taken together, we found that while the initial injury response to heme burden was similar, myeloid FtH deficiency was associated with lesser interstitial fibrosis. Future studies are warranted to determine whether this differential fibrotic remodeling will render these animals more susceptible to a second AKI insult or progress to chronic kidney disease at an accelerated pace.

16.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166442, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35562038

RESUMO

Meals rich in oxalate are associated with calcium oxalate (CaOx) kidney stone disease. Hydroxy-L-proline (HLP) is an oxalate precursor found in milk and collagen-containing foods. HLP has been shown to induce CaOx crystal formation in rodents. The purpose of this study was to evaluate the effect of HLP induced oxalate levels on inflammation and renal leukocytes during crystal formation. Male Sprague-Dawley rats (6-8 weeks old) were fed a control diet containing no oxalate for 3 days before being randomized to continue the control diet or 5% HLP for up to 28 days. Blood, 24 h urine, and kidneys were collected on Days 0, 7, 14, or 28. Urinary oxalate levels, crystal deposition, and renal macrophage markers were evaluated using ion chromatography-mass spectrometry, immunohistochemistry, and qRT-PCR. Renal leukocytes were assessed using flow cytometry and RNA-sequencing. HLP feeding increased urinary oxalate levels and renal crystal formation in animals within 7 days. HLP also increased renal macrophage populations on Days 14 and 28. Transcriptome analysis revealed that renal macrophages from animals fed HLP for 7 days were involved in inflammatory response and disease, stress response to LPS, oxidative stress, and immune cell trafficking. Renal macrophages isolated on Day 14 were involved in cell-mediated immunological pathways, ion homeostasis, and inflammatory response. Collectively, these findings suggest that HLP-mediated oxalate levels induce markers of inflammation, leukocyte populations, and reprograms signaling pathways in macrophages in a time-dependent manner. Additional studies investigating the significance of oxalate on renal macrophages could aid in our understanding of kidney stone formation.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Animais , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Hidroxiprolina , Inflamação , Cálculos Renais/metabolismo , Macrófagos/metabolismo , Masculino , Nefrolitíase , Oxalatos , Ratos , Ratos Sprague-Dawley
17.
Kidney360 ; 3(1): 28-36, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35368565

RESUMO

Background: AKI is a common sequela of infection with SARS-CoV-2 and contributes to the severity and mortality from COVID-19. Here, we tested the hypothesis that kidney alterations induced by COVID-19-associated AKI could be detected in cells collected from urine. Methods: We performed single-cell RNA sequencing (scRNAseq) on cells recovered from the urine of eight hospitalized patients with COVID-19 with (n=5) or without AKI (n=3) as well as four patients with non-COVID-19 AKI (n=4) to assess differences in cellular composition and gene expression during AKI. Results: Analysis of 30,076 cells revealed a diverse array of cell types, most of which were kidney, urothelial, and immune cells. Pathway analysis of tubular cells from patients with AKI showed enrichment of transcripts associated with damage-related pathways compared with those without AKI. ACE2 and TMPRSS2 expression was highest in urothelial cells among cell types recovered. Notably, in one patient, we detected SARS-CoV-2 viral RNA in urothelial cells. These same cells were enriched for transcripts associated with antiviral and anti-inflammatory pathways. Conclusions: We successfully performed scRNAseq on urinary sediment from hospitalized patients with COVID-19 to noninvasively study cellular alterations associated with AKI and established a dataset that includes both injured and uninjured kidney cells. Additionally, we provide preliminary evidence of direct infection of urinary bladder cells by SARS-CoV-2. The urinary sediment contains a wealth of information and is a useful resource for studying the pathophysiology and cellular alterations that occur in kidney diseases.


Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/etiologia , COVID-19/complicações , Humanos , Rim , SARS-CoV-2 , Análise de Sequência de RNA
18.
J Am Soc Nephrol ; 33(4): 747-768, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35110364

RESUMO

BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.


Assuntos
Cistos , Doenças Renais Policísticas , Animais , Cílios/metabolismo , Cistos/genética , Rim/metabolismo , Camundongos , Mutação , Doenças Renais Policísticas/metabolismo
19.
Am J Transplant ; 22(4): 1037-1053, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35049121

RESUMO

A radical solution is needed for the organ supply crisis, and the domestic pig is a promising organ source. In preparation for a clinical trial of xenotransplantation, we developed an in vivo pre-clinical human model to test safety and feasibility tenets established in animal models. After performance of a novel, prospective compatible crossmatch, we performed bilateral native nephrectomies in a human brain-dead decedent and subsequently transplanted two kidneys from a pig genetically engineered for human xenotransplantation. The decedent was hemodynamically stable through reperfusion, and vascular integrity was maintained despite the exposure of the xenografts to human blood pressure. No hyperacute rejection was observed, and the kidneys remained viable until termination 74 h later. No chimerism or transmission of porcine retroviruses was detected. Longitudinal biopsies revealed thrombotic microangiopathy that did not progress in severity, without evidence of cellular rejection or deposition of antibody or complement proteins. Although the xenografts produced variable amounts of urine, creatinine clearance did not recover. Whether renal recovery was impacted by the milieu of brain death and/or microvascular injury remains unknown. In summary, our study suggests that major barriers to human xenotransplantation have been surmounted and identifies where new knowledge is needed to optimize xenotransplantation outcomes in humans.


Assuntos
Rejeição de Enxerto , Rim , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto/patologia , Xenoenxertos , Humanos , Estudos Prospectivos , Suínos , Transplante Heterólogo
20.
Am J Physiol Renal Physiol ; 321(2): F162-F169, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180717

RESUMO

Kidney resident macrophages (KRMs) are involved in maintaining renal homeostasis and in controlling the pathological outcome of acute kidney injury and cystic kidney disease in mice. In adult mice, KRMs maintain their population through self-renewal with little or no input from the peripheral blood. Despite recent data suggesting that a transcriptionally similar population of KRM-like cells is present across species, the idea that they are self-renewing and minimally dependent on peripheral blood input in other species has yet to be proven due to the lack of an appropriate model and cross-species expression markers. In this study, we used our recently identified cross-species KRM cell surface markers and parabiosis surgery in inbred Lewis rats to determine if rat KRMs are maintained independent of peripheral blood input, similar to their mouse counterparts. Flow cytometry analysis indicated that parabiosis surgery in the rat results in the establishment of chimerism of T/B cells, neutrophils, and monocyte-derived infiltrating macrophages in the blood, spleen, and kidney 3 wk after parabiosis surgery. Analysis of KRMs using the cell surface markers CD81 and C1q indicated that these cells have minimal chimerism and, therefore, receive little input from the peripheral blood. These data indicate that KRM properties are conserved in at least two different species.NEW & NOTEWORTHY In this report, we performed parabiosis surgery on inbred Lewis rats and showed that rat kidney resident macrophages (KRMs), identified using our novel cross-species markers, are minimally dependent on peripheral blood input. Thus, for the first time, to our knowledge, we confirm that a hallmark of mouse KRMs is also present in KRMs isolated from another species.


Assuntos
Rim/citologia , Macrófagos/citologia , Monócitos/citologia , Animais , Feminino , Masculino , Parabiose , Ratos , Ratos Endogâmicos Lew , Baço/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...