Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(6): 2220-2227, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38938809

RESUMO

The counter-electrode process of an organic electrochemical reaction is integral for the success and sustainability of the process. Unlike for oxidation reactions, counter-electrode processes for reduction reactions remain limited, especially for deep reductions that apply very negative potentials. Herein, we report the development of a bromide-mediated silane oxidation counter-electrode process for nonaqueous electrochemical reduction reactions in undivided cells. The system is found to be suitable for replacing either sacrificial anodes or a divided cell in several reported reactions. The conditions are metal-free, use inexpensive reagents and a graphite anode, are scalable, and the byproducts are reductively stable and readily removed. We showcase the translation of a previously reported divided cell reaction to a >100 g scale in continuous flow.

2.
Org Process Res Dev ; 28(5): 1917-1928, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38783853

RESUMO

We describe the optimization and scale-up of two consecutive reaction steps in the synthesis of bio-derived alkoxybutenolide monomers that have been reported as potential replacements for acrylate-based coatings (Sci. Adv.2020, 6, eabe0026). These monomers are synthesized by (i) oxidation of furfural with photogenerated singlet oxygen followed by (ii) thermal condensation of the desired 5-hydroxyfuranone intermediate product with an alcohol, a step which until now has involved a lengthy batch reaction. The two steps have been successfully telescoped into a single kilogram-scale process without any need to isolate the 5-hydroxyfuranone between the steps. Our process development involved FTIR reaction monitoring, FTIR data analysis via 2D visualization, and two different photoreactors: (i) a semicontinuous photoreactor based on a modified rotary evaporator, where FTIR and 2D correlation spectroscopy (2D-COS) revealed the loss of the methyl formate coproduct, and (ii) our fully continuous Taylor Vortex photoreactor, which enhanced the mass transfer and permitted the use of near-stoichiometric equivalents of O2. The use of in-line FTIR monitoring and modeling greatly accelerated process optimization in the Vortex reactor. This led to scale-up of the photo-oxidation in 85% yield with a projected productivity of 1.3 kg day-1 and a space-time yield of 0.06 mol day-1 mL-1. Higher productivities could be achieved while sacrificing yield (e.g., 4 kg day-1 at 40% yield). The use of superheated methanol at 200 °C in a pressurized thermal flow reactor accelerated the second step, the thermal condensation of 5-hydroxyfuranone, from a 20 h batch reflux reaction (0.5 L, 85 g) to a space time of <1 min in a reactor only 3 mL in volume operating with projected productivities of >700 g day-1. Proof of concept for telescoping the two steps was established with an overall two-step yield of 67%, producing a process with a projected productivity of 1.1 kg day-1 for the methoxybutenolide monomer without any purification of the 5-hydroxyfuranone intermediate.

3.
Org Lett ; 26(3): 653-657, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38227550

RESUMO

Amide bonds are ubiquitous and found in a myriad of functional molecules. Although formed in a reliable and robust fashion, alternative amide bond disconnections provide flexibility and synthetic control. Herein we describe an electrochemical method to form the non-amide C-N bond from direct benzylic C(sp3)-H amidation. Our approach is applied toward the synthesis of secondary amides by coupling secondary benzylic substrates with substituted primary benzamides. The reaction has been scaled up to a multigram scale in flow.

4.
Science ; 382(6669): 464-471, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883539

RESUMO

Functionally similar to the tight junctions present in animal guts, plant roots have evolved a lignified Casparian strip as an extracellular diffusion barrier in the endodermis to seal the root apoplast and maintain nutrient homeostasis. How this diffusion barrier is structured has been partially defined, but its lignin polymerization and assembly steps remain elusive. Here, we characterize a family of dirigent proteins (DPs) essential for both the localized polymerization of lignin required for Casparian strip biogenesis in the cell wall and for attachment of the strip to the plasma membrane to seal the apoplast. We reveal a Casparian strip lignification mechanism that requires cooperation between DPs and the Schengen pathway. Furthermore, we demonstrate that DPs directly mediate lignin polymerization as part of this mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lignina , Raízes de Plantas , Arabidopsis/metabolismo , Parede Celular/metabolismo , Difusão , Lignina/metabolismo , Raízes de Plantas/metabolismo , Polimerização , Proteínas de Arabidopsis/metabolismo
5.
Org Process Res Dev ; 26(9): 2674-2684, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36158467

RESUMO

We report the development of a single-pass electrochemical Birch reduction carried out in a small footprint electrochemical Taylor vortex reactor with projected productivities of >80 g day-1 (based on 32.2 mmol h-1), using a modified version of our previously reported reactor [Org. Process Res. Dev. 2021, 25, 7, 1619-1627], consisting of a static outer electrode and a rapidly rotating cylindrical inner electrode. In this study, we used an aluminum tube as the sacrificial outer electrode and stainless steel as the rotating inner electrode. We have established the viability of using a sacrificial aluminum anode for the electrochemical reduction of naphthalene, and by varying the current, we can switch between high selectivity (>90%) for either the single ring reduction or double ring reduction with >80 g day-1 projected productivity for either product. The concentration of LiBr in solution changes the fluid dynamics of the reaction mixture investigated by computational fluid dynamics, and this affects equilibration time, monitored using Fourier transform infrared spectroscopy. We show that the concentrations of electrolyte (LiBr) and proton source (dimethylurea) can be reduced while maintaining high reaction efficiency. We also report the reduction of 1-aminonaphthalene, which has been used as a precursor to the API Ropinirole. We find that our methodology produces the corresponding dihydronaphthalene with excellent selectivity and 88% isolated yield in an uninterrupted run of >8 h with a projected productivity of >100 g day-1.

6.
Chem Soc Rev ; 51(13): 5300-5329, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35708003

RESUMO

The purpose of this Tutorial Review is to outline the fundamental photochemistry of metal carbonyls, and to show how the advances in technology have increased our understanding of the detailed mechanisms, particularly how relatively simple experiments can provide deep understanding of complex problems. We recall some important early experiments that demonstrate the key principles underlying current research, concentrating on the binary carbonyls and selected substituted metal carbonyls. At each stage, we illustrate with examples from recent applications. This review first considers the detection of photochemical intermediates in three environments: glasses and matrices; gas phase; solution. It is followed by an examination of the theory underpinning these observations. In the final two sections, we briefly address applications to the characterization and behaviour of complexes with very labile ligands such as N2, H2 and alkanes, concentrating on key mechanistic points, and also describe some principles and examples of photocatalysis.


Assuntos
Elementos de Transição , Ligantes , Metais , Fotoquímica , Elementos de Transição/química
7.
Org Process Res Dev ; 26(4): 1145-1151, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35573033

RESUMO

A new continuous-flow process is presented for synthesis of the pharmaceutical intermediate norketamine (5). Our approach has been to take the well-established and industrially applied batch synthetic route to this promising antidepressant precursor and convert it to a telescoped multi-stage continuous-flow platform. This involves the α-bromination of a ketone, an imination/rearrangement sequence with liquid ammonia, and a thermally induced α-iminol rearrangement. Our approach is high yielding and provides several processing advantages including the reduction of many of the hazards conventionally associated with this route, particularly in the handling of liquid bromine, hydrogen bromide gas, and liquid ammonia. Each of these presents serious operational challenges in a batch process at scale.

8.
Chem Commun (Camb) ; 58(10): 1546-1549, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35014645

RESUMO

Ninhydrin bis-acetals give access to 8-ring lactones, benzocyclo-butenes and spirocyclic orthoanhydrides through photoextrusion and tandem photoextrusion reactions. Syntheses of fimbricalyxlactone B, isoshihunine and numerous biologically-relevant heterocycles show the value of the methods, while TA-spectroscopy and TD-DFT studies provide mechanistic insights on their wavelength dependence.

9.
Nat Commun ; 13(1): 415, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058440

RESUMO

The ability to control photoinduced charge transfer within molecules represents a major challenge requiring precise control of the relative positioning and orientation of donor and acceptor groups. Here we show that such photoinduced charge transfer processes within homo- and hetero-rotaxanes can be controlled through organisation of the components of the mechanically interlocked molecules, introducing alternative pathways for electron donation. Specifically, studies of two rotaxanes are described: a homo[3]rotaxane, built from a perylenediimide diimidazolium rod that threads two pillar[5]arene macrocycles, and a hetero[4]rotaxane in which an additional bis(1,5-naphtho)-38-crown-10 (BN38C10) macrocycle encircles the central perylenediimide. The two rotaxanes are characterised by a combination of techniques including electron diffraction crystallography in the case of the hetero[4]rotaxane. Cyclic voltammetry, spectroelectrochemistry, and EPR spectroscopy are employed to establish the behaviour of the redox states of both rotaxanes and these data are used to inform photophysical studies using time-resolved infra-red (TRIR) and transient absorption (TA) spectroscopies. The latter studies illustrate the formation of a symmetry-breaking charge-separated state in the case of the homo[3]rotaxane in which charge transfer between the pillar[5]arene and perylenediimide is observed involving only one of the two macrocyclic components. In the case of the hetero[4]rotaxane charge separation is observed involving only the BN38C10 macrocycle and the perylenediimide leaving the pillar[5]arene components unperturbed.

10.
Appl Spectrosc ; 76(1): 38-50, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34911387

RESUMO

A continuous-flow electrochemical synthesis platform has been developed to enable self-optimization of reaction conditions of organic electrochemical reactions using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and gas chromatography (GC) as online real-time monitoring techniques. We have overcome the challenges in using ATR FT-IR as the downstream analytical methods imposed when a large amount of hydrogen gas is produced from the counter electrode by designing two types of gas-liquid separators (GLS) for analysis of the product mixture flowing from the electrochemical reactor. In particular, we report an integrated GLS with an ATR FT-IR probe at the reactor outlet to give a facile and low-cost solution to determining the concentrations of products in gas-liquid two-phase flow. This approach provides a reliable method for quantifying low-volatile analytes, which can be problematic to be monitored by GC. Two electrochemical reactions the methoxylation of 1-formylpyrrolidine and the oxidation of 3-bromobenzyl alcohol were investigated to demonstrate that the optimal conditions can be located within the pre-defined multi-dimensional reaction parameter spaces without intervention of the operator by using the stable noisy optimization by branch and FIT (SNOBFIT) algorithm.

11.
J Am Chem Soc ; 143(24): 9082-9093, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34111929

RESUMO

The optical properties of two Re(CO)3(bpy)Cl complexes in which the bpy is substituted with two donor (triphenylamine, TPA, ReTPA2) as well as both donor (TPA) and acceptor (benzothiadiazole, BTD, ReTPA-BTD) groups are presented. For ReTPA2 the absorption spectra show intense intraligand charge-transfer (ILCT) bands at 460 nm with small solvatochromic behavior; for ReTPA-BTD the ILCT transitions are weaker. These transitions are assigned as TPA → bpy transitions as supported by resonance Raman data and TDDFT calculations. The excited-state spectroscopy shows the presence of two emissive states for both complexes. The intensity of these emission signals is modulated by solvent. Time-resolved infrared spectroscopy definitively assigns the excited states present in CH2Cl2 to be MLCT in nature, and in MeCN the excited states are ILCT in nature. DFT calculations indicated this switching with solvent is governed by access to states controlled by spin-orbit coupling, which is sufficiently different in the two solvents, allowing to select out each of the charge-transfer states.

12.
Nat Commun ; 12(1): 2320, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875659

RESUMO

Lignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Parede Celular/genética , Difusão , Lignina/química , Microscopia de Fluorescência/métodos , Mutação , Fenilpropionatos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , RNA-Seq/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/genética , Xilema/metabolismo
13.
Inorg Chem ; 59(21): 15646-15658, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33044820

RESUMO

Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host-guest interactions involved at the atomic scale. Metal-organic polyhedra (MOPs) showing permanent porosity upon desolvation are rarely observed. We report a family of MOPs (Cu-1a, Cu-1b, Cu-2), which derive their permanent porosity from cavities between packed cages rather than from within the polyhedra. Thus, for Cu-1a, the void fraction outside the cages totals 56% with only 2% within. The relative stabilities of these MOP structures are rationalized by considering their weak nondirectional packing interactions using Hirshfeld surface analyses. The exceptional stability of Cu-1a enables a detailed structural investigation into the adsorption of CO2 and CH4 using in situ X-ray and neutron diffraction, coupled with DFT calculations. The primary binding sites for adsorbed CO2 and CH4 in Cu-1a are found to be the open metal sites and pockets defined by the faces of phenyl rings. More importantly, the structural analysis of a hydrated sample of Cu-1a reveals a strong hydrogen bond between the adsorbed CO2 molecule and the Cu(II)-bound water molecule, shedding light on previous empirical and theoretical observations that partial hydration of metal-organic framework (MOF) materials containing open metal sites increases their uptake of CO2. The results of the crystallographic study on MOP-gas binding have been rationalized using DFT calculations, yielding individual binding energies for the various pore environments of Cu-1a.

14.
J Am Chem Soc ; 142(35): 14947-14956, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786778

RESUMO

Time Dependent Density Functional Theory has been used to assist the design and synthesis of a series thioxanthone triplet sensitizers. Calculated energies of the triplet excited state (ET) informed both the type and position of auxochromes placed on the thioxanthone core, enabling fine-tuning of the UV-vis absorptions and associated triplet energies. The calculated results were highly consistent with experimental observation in both the order of the λmax and ET values. The synthesized compounds were then evaluated for their efficacies as triplet sensitizers in a variety of UV and visible light preparative photochemical reactions. The results of this study exceeded expectations; in particular [2 + 2] cycloaddition chemistry that had previously been sensitized in the UV was found to undergo cycloaddition at 455 nm (blue) with a 2- to 9-fold increase in productivity (g/h) relative to input power. This study demonstrates the ability of powerful modern computational methods to aid in the design of successful and productive triplet sensitized photochemical reactions.

15.
ChemSusChem ; 13(23): 6278-6283, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32291955

RESUMO

Solar-driven reduction of CO2 into renewable carbon forms is considered as an alternative approach to address global warming and the energy crisis but suffers from low efficiency of the photocatalysts. Herein, a direct Z-Scheme SnS2 /sulfur-bridged covalent triazine frameworks (S-CTFs) photocatalyst (denoted as SnS2 /S-CTFs) was developed, which could efficiently adsorb CO2 owing to the CO2 -philic feature of S-CTFs and promote separation of photoinduced electron-hole pairs. Under visible-light irradiation, SnS2 /S-CTFs exhibited excellent performance for CO2 photoreduction, yielding CO and CH4 with evolution rates of 123.6 and 43.4 µmol g-1 h-1 , respectively, much better than the most catalysts reported to date. This inorganic/organic hybrid with direct Z-Scheme structure for visible-light-driven CO2 photoreduction provides new insights for designing photocatalysts with high efficiency for solar-to-fuel conversion.

16.
Phys Chem Chem Phys ; 22(8): 4429-4438, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32051990

RESUMO

A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon reduction of each BODIPY moiety radical anions are formed which are shown to have different spin multiplicities by electron paramagnetic resonance (EPR) spectroscopy and distinct profiles in their cyclic voltammograms and UV-visible spectra. The relationship between structure and multiplicity is demonstrated showing that the balance between singlet, biradical or triplet states in the dyads depends on relative orientation and connectivity of the BODIPY groups. The strategy is applied to the synthesis of a BODIPY triad which adopts an unusual quartet state upon reduction to its radical trianion.

17.
Chem Sci ; 11(32): 8600-8609, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123120

RESUMO

Ruthenium polypyridyl complexes which can sensitise the photo-oxidation of nucleic acids and other biological molecules show potential for photo-therapeutic applications. In this article a combination of transient visible absorption (TrA) and time-resolved infra-red (TRIR) spectroscopy are used to compare the photo-oxidation of guanine by the enantiomers of [Ru(TAP)2(dppz)]2+ in both polymeric {poly(dG-dC), poly(dA-dT) and natural DNA} and small mixed-sequence duplex-forming oligodeoxynucleotides. The products of electron transfer are readily monitored by the appearance of a characteristic TRIR band centred at ca. 1700 cm-1 for the guanine radical cation and a band centered at ca. 515 nm in the TrA for the reduced ruthenium complex. It is found that efficient electron transfer requires that the complex be intercalated at a G-C base-pair containing site. Significantly, changes in the nucleobase vibrations of the TRIR spectra induced by the bound excited state before electron transfer takes place are used to identify preferred intercalation sites in mixed-sequence oligodeoxynucleotides and natural DNA. Interestingly, with natural DNA, while it is found that quenching is inefficient in the picosecond range, a slower electron transfer process occurs, which is not found with the mixed-sequence duplex-forming oligodeoxynucleotides studied.

18.
Faraday Discuss ; 220(0): 86-104, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31608916

RESUMO

A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragment 3CpMn(CO)2 formed upon photolysis of CpMn(CO)3. Experimental data are provided for reactions in n-heptane and perfluoromethylcyclohexane (PFMCH), as well as in PFMCH doped with C2H6, Xe and CO2. In PFMCH we find that the conversion of 3CpMn(CO)2 to 1CpMn(CO)2(PFMCH) is much slower (τ = 18 (±3) ns) than the corresponding reactions in conventional alkanes (τ = 111 (±10) ps). We measure the effect of the coordination ability by doping PFMCH with alkane, Xe and CO2; these doped ligands form the corresponding singlet adducts with significantly variable formation rates. The reactivity as measured by the addition timescale follows the order 1CpMn(CO)2(C5H10) (τ = 270 (±10) ps) > 1CpMn(CO)2Xe (τ = 3.9 (±0.4) ns) ∼ 1CpMn(CO)2(CO2) (τ = 4.7 (±0.5) ns) > 1CpMn(CO)2(C7F14) (τ = 18 (±3) ns). Electronic structure theory calculations of the singlet and triplet potential energy surfaces and of their intersections, together with non-adiabatic statistical rate theory, reproduce the observed rates semi-quantitatively. It is shown that triplet adducts of the ligand and 3CpMn(CO)2 play a role in the kinetics, and account for the variable timescales observed experimentally.

19.
J Chem Phys ; 151(3): 034104, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31325914

RESUMO

The calculation of electron ionization energies is a key component for the simulation of photoelectron spectroscopy. CIS(D) is a perturbative doubles correction for the single excitation configuration interaction (CIS) method which provides a new approach for computing excitation energies. It is shown that by introducing a virtual orbital subspace that consists of a single "ghost" orbital, valence electron ionization energies can be computed using a scaled CIS(D) approach with an accuracy comparable with considerably more computationally intensive methods, such as ionization-potential equation of motion coupled cluster theory, and simulated spectra show a significant improvement relative to spectra based upon Koopmans' theorem. When the model is applied to the ionization energies for core orbitals, there is an increase in the error, particularly for the heavier nuclei considered (silicon to chlorine), although the relative energy of the ionization energies are predicted accurately. In addition to its inherent computational efficiency relative to other wavefunction based approaches, a significant advantage of this approach is that the ionization energies for all electrons can be obtained in a single calculation, in contrast to Δself-consistent field based methods.

20.
Inorg Chem ; 58(15): 9785-9795, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31314505

RESUMO

A transition-metal-based donor-(linker)-acceptor system can produce long-lived charge transfer excited states using visible excitation wavelengths. The ground- and excited-state photophysical properties of a series of [ReCl(CO)3(dppz-(linker)-TPA)] complexes, with varying donor and acceptor energies, have been systematically studied using spectroscopic techniques (both vibrational and electronic) supported by computational chemistry. The long-lived excited state is 3ILCT in nature for all complexes studied, characterized through transient absorption and emission, transient resonance Raman (TR2), and time-resolved infrared (TRIR) spectroscopy and TDDFT calculations. Modulation of the donor and acceptor energies results in changes of the 3ILCT lifetime by 1 order of magnitude, ranging from 6.1(±1) µs when a diphenylamine donor is used to 0.6(±0.2) µs when a triazole linker and triphenylamine donor is used. The excited-state lifetime may be rationalized by consideration of the driving force within the framework of Marcus theory and appears insensitive to the nature of the linker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...