Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; : e0012324, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869304

RESUMO

Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.

2.
Nat Commun ; 14(1): 3896, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393310

RESUMO

Gram-positive bacteria synthesize and secrete antimicrobial peptides that target the essential process of peptidoglycan synthesis. These antimicrobial peptides not only regulate the dynamics of microbial communities but are also of clinical importance as exemplified by peptides such as bacitracin, vancomycin, and daptomycin. Many gram-positive species have evolved specialized antimicrobial peptide sensing and resistance machinery known as Bce modules. These modules are membrane protein complexes formed by an unusual Bce-type ABC transporter interacting with a two-component system sensor histidine kinase. In this work, we provide the first structural insight into how the membrane protein components of these modules assemble into a functional complex. A cryo-EM structure of an entire Bce module revealed an unexpected mechanism of complex assembly, and extensive structural flexibility in the sensor histidine kinase. Structures of the complex in the presence of a non-hydrolysable ATP analog reveal how nucleotide binding primes the complex for subsequent activation. Accompanying biochemical data demonstrate how the individual membrane protein components of the complex exert functional control over one another to create a tightly regulated enzymatic system.


Assuntos
Peptídeos Antimicrobianos , Peptídeos , Histidina Quinase , Transportadores de Cassetes de Ligação de ATP , Proteínas de Membrana
3.
Proc Natl Acad Sci U S A ; 119(14): e2123268119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349335

RESUMO

SignificanceMany gram-positive organisms have evolved an elegant solution to sense and resist antimicrobial peptides that inhibit cell-wall synthesis. These organisms express an unusual "Bce-type" adenosine triphosphate-binding cassette (ABC) transporter that recognizes complexes formed between antimicrobial peptides and lipids involved in cell-wall biosynthesis. In this work, we provide the first structural snapshots of a Bce-type ABC transporter trapped in different conformational states. Our structures and associated biochemical data provide key insights into the novel target protection mechanism that these unusual ABC transporters use to sense and resist antimicrobial peptides. The studies described herein set the stage to begin developing a comprehensive molecular understanding of the diverse interactions between antimicrobial peptides and conserved resistance machinery found across most gram-positive organisms.


Assuntos
Bacitracina , Farmacorresistência Bacteriana , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/metabolismo , Bacitracina/metabolismo , Bacitracina/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo
4.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852779

RESUMO

Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory tract disease and mortality in infants and the elderly. Currently, no vaccine or effective treatment exists for RSV. The RSV G glycoprotein mediates viral attachment to cells and contributes to pathogenesis by modulating host immunity through interactions with the human chemokine receptor CX3CR1. Antibodies targeting the RSV G central conserved domain are protective in both prophylactic and postinfection animal models. Here, we describe the crystal structure of the broadly neutralizing human monoclonal antibody 3G12 bound to the RSV G central conserved domain. Antibody 3G12 binds to a conformational epitope composed of highly conserved residues, explaining its broad neutralization activity. Surprisingly, RSV G complexed with 3G12 adopts a distinct conformation not observed in previously described RSV G-antibody structures. Comparison to other structures reveals that the RSV G central conserved domain is flexible and can adopt multiple conformations in the regions flanking the cysteine noose. We also show that restriction of RSV G flexibility with a proline mutation abolishes binding to antibody 3G12 but not antibody 3D3, which recognizes a different conformation of RSV G. Our studies provide new insights for rational vaccine design, indicating the importance of preserving both the global structural integrity of antigens and local conformational flexibility at antigenic sites, which may elicit a more diverse antibody response and broader protection against infection and disease.IMPORTANCE Respiratory syncytial virus (RSV) causes severe respiratory infections in infants, young children, and the elderly, and currently, no licensed vaccine exists. In this study, we describe the crystal structure of the RSV surface glycoprotein G in complex with a broadly neutralizing human monoclonal antibody. The antibody binds to RSV G at a highly conserved region stabilized by two disulfide bonds, but it captures RSV G in a conformation not previously observed, revealing that this region is both structured and flexible. Importantly, our findings provide insight for the design of vaccines that elicit diverse antibodies, which may provide broad protection from infection and disease.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/imunologia , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Receptor 1 de Quimiocina CX3C/metabolismo , Cristalografia por Raios X , Epitopos/genética , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética
5.
Sci Immunol ; 3(21)2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523582

RESUMO

Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory tract disease and mortality in young children and the elderly. The viral envelope G glycoprotein contributes to pathogenesis through its roles in host cell attachment and modulation of host immunity. Although the G glycoprotein is a target of protective RSV-neutralizing antibodies, its development as a vaccine antigen has been hindered by its heterogeneous glycosylation and sequence variability outside a conserved central domain (CCD). We describe the cocrystal structures of two high-affinity broadly neutralizing human monoclonal antibodies bound to the RSV G CCD. The antibodies bind to neighboring conformational epitopes, which we named antigenic sites γ1 and γ2, that span a highly conserved surface, illuminating an important region of vulnerability. We further show that isolated RSV G CCD activates the chemokine receptor CX3CR1 and that antibodies block this activity. These studies provide a template for rational vaccine design targeting this key contributor to RSV disease.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Antígenos Virais/química , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/química , Antígenos Virais/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Linhagem Celular Tumoral , Quimiocina CX3CL1/imunologia , Humanos , Conformação Proteica , Proteínas Virais de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...